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Abstract

The process of determining if an agent has returned to a previously visited location
by analyzing data from its sensors, known variably as loop closure detection and
place recognition, is an essential component of modern mobile robotic systems.
It is also one of the most challenging instances of the canonical ‘data association
problem’, the problem of determining if and how two different sensor readings may
or may not originate from the same physical entity. Until recently, hand-crafted
solutions have dominated research on loop closure detection. As approaches
based on deep learning begin to outperform more classical techniques, we have
an excellent opportunity to rethink the definition of success, what different failure
cases can teach us about the frontiers of robotic intelligence, and how to generate
more interesting hypotheses in a more targeted manner. Here, we present an
overview of loop closure detection research, focusing on its role within the robotics
stack, why it is still an unsolved problem, and some of the successes and failures
of research to-date. We go on to propose a new experimental paradigm and argue
that loop closure detection offers a unique vehicle for studying machine learning in
embodied systems, and embodied intelligent systems more broadly.

1 Introduction

Many of us have, at one point or another, wandered through a city we were not completely familiar
with only to find ourselves not entirely sure of our location. Our belief about which corner we were
on was spread out over several intersections. Then, after continuing to wander one or two more
blocks, we would pass a familiar shop or catch a glimpse of a large building we had seen previously
and our belief would collapse onto a much smaller area. Additionally, not only did we become more
certain of our current location, but we also had a more accurate estimate of the path we had taken
between that moment and the last time we had seen a familiar landmark.

Robots rely on a similar process, known as loop closure, to reduce the effect of error in their location
estimate which builds up over time due to the inherent noise and un-modeled dynamics in their
sensors and actuators. Loop closure events, where a set of features assumed to be stationary are
re-observed, provide information about a robot’s location in the form of a constraint on the estimated
trajectory. Essentially, these events require the cumulative effect of all motor commands issued
between observations to result in a specific affine transformation of the robot’s coordinate system.
Effective loop closure detection (LCD) is critical for the realization of mobile robotic systems capable
of long-term autonomy. This fact is not lost on the research community, and there has been a wealth of
research on LCD and other related problems. However, robots do not enjoy the same deep contextual,
semantic, or commonsense knowledge that humans employ when attempting to loop-close. Although
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this presents an obvious hurdle for researchers trying to implement functional systems, we argue this
offers a unique academic opportunity and will revisit this trait in a more optimistic context.

Loop closure detection shares many similarities with other topics in machine learning and when
operating on robotic systems using cameras can be thought of as a special case of image retrieval.
Since nearly all LCD systems compute a similarity score as a proxy for the probability that two sensor
readings are from the same location or bear some geometric relationship, LCD is fundamentally
linked to all other topics in computing where a notion of similarity is ambiguous. A wide array
of models and algorithms are theoretically applicable, and this is evidenced by the diversity of the
resultant body of work on LCD. The heterogeneity of sensors, compute limitations, and operating
environments of different robots generate further specialization and customization.

Custom systems may not seem generally interesting, but they are often required, since loop closure
systems must be more performant than their image retrieval counterparts. Mobile robots depend
on accurate, online location estimates, and LCD systems are a key component in generating these
estimates. In addition to heightened performance requirements, LCD systems face a uniquely large
set of confounding factors that make their design, deployment, and evaluation relatively challenging
compared to many modern machine learning and perceptual robotics problems. For example, aerial
robots inspecting the structural integrity of a building or bridge [14] might need to deal with greater
variance in viewing angles compared to ground robots given the additional degrees of freedom.
Underwater robots [113] building oceanographic models or inspecting shipping infrastructure may
encounter lower levels of visibility, reducing the effective range and reliability of some sensors.
Ground robots may operate indoors, as service robots in security or elder-care roles [62], where
they encounter frequent occlusions, or outdoors, as automated farm equipment [37] or autonomous
passenger cars [21], where they are exposed to a wide variety of lighting conditions.

In the first half of this paper, we provide an overview of the challenges in detecting loop closures
and the resultant research aimed at meeting those challenges. In the latter half, we discuss evaluation
of loop closure detection systems and intelligent systems more broadly. We start by addressing
common shortcomings in contemporary LCD experimentation and highlighting some potential near-
term changes in best practice. We then propose a new, human-centered experimental paradigm for
LCD systems which may lead to richer hypotheses and more targeted approaches to developing
state-of-the-art systems. LCD is an excellent example of a highly integrated behavior, and the fact
that both humans and robots run essentially the same process could open new avenues for validating
or interrogating LCD systems and providing direction and insight to researchers studying a broad
spectrum of related artificial intelligence questions. Lastly, we argue that the recent ascension of
machine learning systems for loop closure detection provides a valuable opportunity for rethinking
the broad impact and implications of this domain. We also discuss how machine learning can advance
the state-of-the-art, what the limits of current machine learning-based systems can tell us about the
fundamental requirements of loop closure detection, and how our performance on loop closure may
entail success or failure in complex tasks more broadly.

2 Loop Closure Detection: Context and Challenges

In practice, loop closure detection is not a standalone problem and, as with most other problems
in robotics, the process of loop closure has spawned many related research topics. These include
how to: use loop closures to increase map accuracy most effectively, adapt single-robot loop closure
detection schemes to multi-robot settings [146, 128], efficiently communicate information about
loop closures in multi-robot settings [116, 147, 53], plan actions for active loop closure [29, 27],
prove trajectories contain loops by analyzing proprioceptive data [125], handle false loop closures
robustly [115], and search efficiently for potential loop closures among past data instances in order to
meet robots’ real-time operating constraints [156, 89, 80]. We restrict our focus to LCD because it is
a more commonly required capability than some of the above and because it lends itself more readily
to the application of machine learning techniques. However, we should note that many of these issues,
especially the first and last, are sometimes implicitly addressed in research nominally focused on
improving LCD accuracy and robustness. Before we give an overview of existing research, we will
provide some background and context regarding the role of LCD systems in mobile robotic systems
and what makes LCD an especially challenging and interesting problem.
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Figure 1: Example loop closure diagram. The robot’s estimated trajectory is represented by the
black line, and a subset of robot poses are represented by triangles. The stars represent recognizable
features that may produce loop closures. On the left, the loop is detected and a constraint is added to
the optimization problem representing the fact that the feature (star) must be in the same place in
the global frame during its original and subsequent observations. On the right, the features are not
recognized as the same, and the accumulated error in location estimate persists.

2.1 The Role of Loop Closure Detection

Loop closure detection is a sub-problem within one of the quintessential problems in robotics:
Simultaneous Localization And Mapping (SLAM). SLAM systems use streams of sensor data from
robots as they move around in new environments to simultaneously create a model of the environment
and determine the robot’s location with respect to that model. As the robot explores, the model (map)
is built and refined incrementally, based on new data and the robot’s previous estimate of its location.
In many scenarios the robot does not have access to sensors with globally bounded error, such as
GPS. Small amounts of noise in sensor readings can shift the minima or maxima of the robot’s cost
functions or estimators away from the ground truth, resulting in small errors in the robot’s location
estimate. Over time these errors can compound and if left unchecked will eventually produce location
estimates which are so far from the ground truth that they prevent normal operation of the robot.

Figure 1 illustrates a simplified loop closure event. The error in the trajectory on the right is the result
of the compounding of many small errors in the estimate from one pose (triangle) to the next. Since
the estimate of the next pose depends on the estimate of the current pose, errors in previous estimates
affect future estimates. Note that some segments of the trajectory may be internally accurate, such as
the top right section which correctly estimates a 90 degree left turn, but due to previous errors, they
result in an increasing error relative to the ground truth. Robust re-detection of stationary landmarks
in the world can produce location information with a constant amount of error, regardless of how far
the robot has travelled. This is in contrast to pure odometry, for example, the trajectory on the right,
where the location estimate becomes increasingly inaccurate over time.

LCD systems are, so far, the most effective way to deal with localization drift. Assuming no false
positives (which is not always a valid assumption), LCD systems do provide location estimates with
globally bounded error. Furthermore, loops can be detected with sensors already available to the
robot, and the natural trajectory of a robot exploring a new area will likely present opportunities
for loop closure, even without explicitly planning for it. Loop closure events also provide indirect
information about intermediate robot locations which occur between the original and subsequent, or
loop closing, observation. Since a robot’s trajectory unfolds sequentially, information from a loop
closure event is applied selectively to the segment of the trajectory that occurs between the original
and subsequent observation. When features are re-observed multiple times, the loop closure events
can create multiple constraints, one for each pair of observations. This ability to use re-observations
to refine the trajectory estimate for segments of trajectory which are not local to the observation is
valuable for maintaining map accuracy.

Ultimately, expecting a similarity score computed on a single sensor reading, or even a sequence of
sensor readings, to accurately and robustly represent the probability of revisiting the same location
may be optimistic. However, although such scores are difficult to compute, similar efforts where
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similarity scores are used as proxies for much more complicated computations are extremely common
across machine learning, including protein fold recognition [86], forensic ballistics [144], bilingual
dictionary induction [129], knowledge graph evaluation [174], face recognition [141, 154, 155],
personalized disease prediction [137], patent law [151], social network analysis [13], facility layout
[78], ad relevance [163], image patch correspondence [61], question answering [25], UML diagram
consistency [1], opponent modeling [112], paraphrase detection [45], behaviour novelty in swarm
robotics [55], robotic grasp planning [143], and personality traits for human-robot interaction [4],
among many others. LCD systems have the potential to benefit from the wealth of research on
constructing robust similarity measures.

There are two key differences between LCD systems and other tasks performing similarity queries,
such as image retrieval. First, the cost of false positives is high. State-of-the-art SLAM systems
represent the estimate of the robot’s trajectory as a dynamic Bayesian network (DBN) and from
this representation construct a non-linear least-squares optimization problem where minimum cost
represents maximum probability. Loop closures essentially add extra edges in the DBN, which
manifest as additional cost terms in the resulting optimization problem. False loop closures add
erroneous cost functions which can drastically alter the maximum likelihood trajectory estimate
and thus severely distort the resulting map. In most loop closure situations, false positives are
more costly than false negatives. Second, LCD systems must distinguish between different physical
locations, even if those locations appear very similar qualitatively. The problem of distinct locations
appearing nearly identical is known as ‘perceptual aliasing’, and is surprisingly common in man-made
environments as well as some natural terrain like fields, forests, and sea floors.

Perceptual aliasing can have different degrees of impact depending on how the robot represents its
operating environment. The two most common representations are topological maps and metric
maps. Topological maps represent the environment as a graph, where distinct ‘places’ are nodes, and
the edges represent navigability between places. A robot’s trajectory through a topological map is
represented by a sequence of nodes representing the order and identity of the places visited by the
robot. Metric maps build a dense reconstruction of the environment using landmarks, features, or raw
sensor readings with 2D or 3D positions all registered to the same global coordinate frame. A robot’s
trajectory through a metric map is represented by a sequence of robot positions and orientations,
called ‘poses’, in SE(2) or SE(3) which describe the robot’s motion through Cartesian space over
time. Perceptual aliasing is often a larger problem for metric SLAM since even false loop closures
within the same room can degrade the location estimate, while in topological SLAM the same
association would likely result in a true positive. Moreover, loop closures in metric SLAM need to
estimate the affine transform by which two sensor reading are related in addition to simply identifying
that the readings originate from the same general place.

2.2 Challenges in Loop Closure Detection

Loop closure detection is a difficult problem in the general case. To begin, LCD systems rely on
sensors which are inherently noisy, discrete, and often lack perfect calibration. An even greater
number of challenges stem from the diversity of potential sensing conditions. For example, the
images of the Eiffel Tower in Figure 2 represent a surprisingly wide variety of sensing conditions
driven by several important underlying concepts and their dynamics. These include partial occlusions,
field of view limitations, changing viewing angles, the presence or absence of vegetation due to
seasonal changes, artificial light, changes in lighting conditions due to time of day and weather,
reflective surfaces, and the presence of transient objects, such as boats on the Seine river. Some of
these dynamics are difficult to model or predict, and the robot may face many of them simultaneously
depending on its operating environment. Part of the difficulty these dynamics present is that research
on measuring or characterizing these effects is still in its early stages.

Given this imposing slate of challenges, it seems likely that approaches more deeply integrated with
knowledge or models of many of these processes will be superior in the long run. This hypothesis
is motivated by two points. First, the data-ineffiency of modern machine learning systems is a
serious problem in robotics. Robots are expensive to operate and deploy, and may have serious
safety concerns which require increased robustness and the corresponding increase in data. Therefore,
getting enough realistic data that represents all contingencies is arguably infeasible, especially for
domains like extraterrestrial or deep sea exploration. Second, successful robotic systems are usually
developed in many development cycles, as opposed to a single, inspired choice of architecture.
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Figure 2: A variety of images of the Eiffel Tower and Seine river.

Although evaluating a single, large algorithm or network is easier from a testing infrastructure
standpoint, it has significant disadvantages with respect to interpretability. This is a drawback for
integrated systems like robots, since better models of performance have a positive feedback loop with
respect to development by allowing more targeted algorithm improvements.

3 An Overview of Existing Research

Here, we present a brief summary of existing research on loop closure detection. Previously, surveys
on LCD for depth-based [150] and camera-based [28, 153, 94] systems have offered useful summaries
of existing work, explanations of various methods, and areas for potential research and innovation. In
this section, our main contributions are 1) a combined accounting of both depth-based and camera-
based techniques for loop closure, including research published since the last widely acknowledged
surveys, and 2) providing an easily accessible directory linking LCD papers to particular sensing
modalities, map types, technical details, and data sets. Regarding data set notation in the tables:
entries with ‘AV Driving’ or ‘Service Robot’ indicate collection of a custom data set that most
similarly resembles data gathered by autonomous vehicles (AVs) or service robots, respectively, and
entries with ‘dataset/+’ indicate additional open source data was also used.

In general, we identify three primary axes along which engineering decisions are made when building
LCD systems. First, should sensor input be represented by descriptors computed on subsets of data,
such as image patches (often called local descriptors), or should descriptors represent data holistically
(often called global descriptors)? Second, should the functions that produce descriptors from raw
data be hand-crafted or learned? Third, should similarity functions for ultimately detecting loop
closures be based on statistical measures, hand-crafted distance functions, or should they be learned,
for instance by a neural network? All of these questions represent areas of active research, and a
comprehensive understanding of these decisions and their affect on system performance remains
elusive. Moreover, some recent research proposes combining elements of the above approaches to
create hybrid systems with impressive performance.

3.1 Camera-based Systems

Tables 1 and 2 provide an overview of camera-based LCD systems. One of the more contested
decisions, which we omit from the tables, is whether to use global image descriptors or local image
descriptors [91]. In general the best choice may depend on the specific application. For instance,
large changes in scene due to occlusions could result in large changes in global descriptors, whereas
a subset of local descriptors which are not occluded may be robust enough to correctly identify the
perceptual target. On the other hand, global effects to the image such as lighting changes due to the
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day/night cycle may be handled more robustly by global descriptors since the salience of individual
image patches under these changes may be difficult to model. However, for determining loop closures
and their metric constraints, local image descriptors are superior since they can encode information
about viewing angle that global descriptors often cannot.

Work Modality Map Type Learning Technique Dataset
[148] RGB Metric No HoG+RANSAC Simulation
[69] RGB Metric No SIFT+RANSAC AV Driving
[58] RGB Metric No Clustering+Histograms fr2
[82] RGB Metric No SURF+RANSAC Campus01/+

[161] RGB Metric No ORB+BoW+RANSAC Service Robot
[169] RGB Metric No Vanish points+RANSAC Service Robot
[35] RGB Metric No SIFT+RANSAC+MEWC AUV
[47] RGB Topo-Metric No iBoW+RANSAC KITTI/+

[110] RGB Topo-Metric No SURF+iBoW Service Robot
[111] RGB Topo-Metric No BRISK+BoW Service Robot
[173] RGB Topo-Metric No BoW+K-means Service Robot
[109] RGB Topo-Metric No SIFT+BoW AV Driving
[152] RGB Topo-Metric Yes Random Fern+RANSAC Service Robot
[159] RGB Topo-Metric Yes ORB+RANSAC+PCANet New College/+
[11] RGB Topological Yes LoCATe+DBoW2 Lip6/+

[139] RGB Topological Yes SIFT+BoW AV Driving
[117] RGB Topological Yes Histograms+SVM INDECS
[97] RGB Topological Yes BRISK+kNN St. Lucia/+
[81] RGB Topological Yes GAN Norland
[31] RGB Topological Yes Attentional CNN St. Lucia/+

[104] RGB Topological No Patch Matching Alderley
[30] RGB Topological Yes Multi-scale CNN SPED/+

[114] RGB Topological No SMART Alderley/+
[145] RGB Topological No AfRob Service Robot
[107] RGB Topological No HOG+min-flow AV Driving
[39] RGB Topological No Zernike Moments+NN KITTI/+
[10] RGB Topological No BRIEF+BoW New College/+

[102] RGB Topological Yes Autoencoder+BoW KITTI/+
[172] RGB Topological Yes CNN+PCA New College/+
[140] RGB Topological No Clustering+BoW+NN KITTI/+
[170] RGB Topological No FAST+BoW New College/+
[130] RGB Topological No SIFT+E2LSH Service Robot
[85] RGB Topological No ORB+V-kNN+BoW New College/+

[103] RGB Topological Yes Autoencoder+HOG KITTI/+
[33] RGB Topological No SURF+BoW+Chow Liu AV Driving
[24] RGB Topological Yes CNN+Subgraph Match New College/+
[72] RGB Topological No SURF+BoWP+RANSAC New College/+
[98] RGB Topological No BRISK+BoW orthophoto Service Robot

[171] RGB Topological No SIFT+BoRF Service Robot
[7] RGB Topological No SIFT+iBoW+Bayes AV Driving

[165] RGB Topological No BRIEF+LSD+LBD+BoW New College/+
[90] RGB Topological No Gabor-Gist+PCA Oxford City

[157] RGB Topological No BRISK+E2LSH+NN Service Robot
[67] RGB Topological Yes Places CNN New College/+
[20] RGB Topological No SURF+BoW Service Robot
[46] RGB Topological Yes Autoencoder Frieburg
[73] RGB Topological No BRISK+iBoW City Centre/+
[49] RGB Topo-Semantic Yes Places365+SeqSLAM QUT Campus/+

Table 1: LCD systems for RGB images

Hand-crafted local feature descriptors, such as SIFT [92], SURF [12], BRIEF [23], BRISK [83],
ORB [126], FREAK [2], and AKAZE [3], as well as methods for computing local image statistics,
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Work Modality Map Type Learning Technique Dataset
[38] Gray Topological No PCA+l2-norm Service Robot
[52] Pan Topological No Histograms Service Robot
[9] Pan Topological No LDB+Ad-hoc Score Ford Campus/+
[8] Pan Topological Yes NetVLAD+CNN Time Machine

[42] Omni Topo-Metric No HOG Service Robot
[5] Omni Topo-Metric No FS+HOG+l2-norm Service Robot

[101] Omni Topo-Metric No SIFT+kNN Service Robot
[6] Omni Topological Yes SIFT+MRF AV Driving

[142] Omni Topological Yes Histograms+kNN Service Robot
[26] Omni Topological No SIFT+BoW+Bayes AV Driving
[95] Omni Topological No Haar Wavelet Service Robot
[71] Omni Topological No PIRF City Centre/+

[149] Omni Topo-Semantic Yes HCT+SVM COLD
Table 2: LCD systems for gray-scale, panoramic, or omni-directional images

such as histograms of oriented gradients (HOG) [34], discrete wavelet transforms, including Haar
wavelets, discrete Fourier transforms, and Zernike moments [74], among others, are gradually being
replaced by local image descriptors learned using convolutional neural networks (CNNs) or generative
adversarial networks (GANs) [131]. There have also been some meta-studies that evaluate multiple
deep learning approaches for LCD [160] and find that they perform well. We expect many of these
methods to better fit given data sets and perhaps to generate more informative mappings from raw
images to descriptors in some scenarios, but it seems unlikely that this evolution in feature descriptors
alone will produce fully functional LCD systems in general. More impactful questions likely involve
better understanding the un-modeled dynamics mentioned in section 2.2, such as investigating whether
modeling seasonal change removal is more effective than change prediction [93].

One weakness of most camera-based LCD systems is their limitation to topological loop closure.
Metric methods generalize topological methods, and with the rise in popularity of camera-based
methods for SLAM [106, 118, 87], or methods which use both images as well as depth sensors,
research on strictly topological LCD may deliver less impact. Identifying the correct topological
location is informative, but it generally leaves the hardest part of the question unanswered.

3.2 Depth-based Systems

Similar to camera-based systems, there is some debate about whether point and corner descriptors,
object descriptors, or learned similarity functions are superior. These methods are not necessarily
mutually exclusive, and indeed the optimal choice likely depends on the deployment context. For
instance, corner descriptors are likely an excellent choice for regular, man-made environments such
as hospitals or warehouses, whereas learned similarity functions might perform well in environments
with less structure, like agriculture or forestry applications. Studies on repeatability for different
descriptor designs exist [16], and more work along these lines would likely benefit practitioners.
Again though, while innovation on descriptor design does have potential to improve performance
of depth-based LCD in some cases, it is more likely that large gains will come from addressing
questions at a higher level of abstraction. Table 3 provides an overview of depth-based LCD systems.

Depth-based LCD systems have adopted and integrated tools from deep learning more slowly.
However, there is a segment of the computer vision research community which has been generating
local depth image descriptors using deep networks in the context of object recognition and model
estimation. ShapeNet [158] was introduced to identify 3D objects by training on depth maps from
CAD models. Similarly, there has been research on identifying 3D objects based on descriptors
generated from one or more 2D views using a CNN [135]. Deep networks have also been trained to
produce Fisher and Eigen shape descriptors for identifying simulated 3D objects [40]. PointNet [119]
and PointNet++ [120] popularized the concept of using deep learning to generate single- and multi-
scale descriptors for 3D depth patches, respectively. Other approaches, such as PCPNet [59] have
proposed using deep learning to learn shape properties from depth observations. Another line of
research uses deep learning to learn a general similarity function for depth data in an effort to improve
data exploration and analysis when designing and debugging robotic perception algorithms [108].
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Work Modality Map Type Learning Technique Dataset
[22] 2D Metric No Tree of Words AV Driving

[138] 2D Metric No FLIRT+RANSAC Intel/fr-clinic
[70] 2D Metric No FALKO+max-clique Intel/fr-clinic/+
[65] 2D Metric No Submap Matching Intel/Frieburg/+

[122] 2D Metric No Clustering Service Robot
[164] 2D Metric No Submap Matching AV Driving
[56] 2D Metric Yes AdaBoost AV Driving
[84] 2D Metric Yes CNN Sim/Real UAV
[17] 2D Metric No Moment Grids+kNN AV Driving

[100] 2D Metric No max-clique NCLT
[77] 2D Topological Yes Clustering+NN Service Robot
[66] 2D+RGB Metric No SIFT+scan stats AV Driving

[121] 2D+RGB Metric Yes Submaps+CNN MIT Stata Center
[54] 3D+RGB Metric No Bitmaps+kNN 7-scenes
[50] 3D+RGB Topo-Metric No NBLD/ORB+Voting KITTI/+
[19] 3D Metric No Gestalt+Voting Hannover2/+

[127] 3D Metric No FPFH+SAC-IA AV Driving
[99] 3D Metric No NDT+ad-hoc Score Hannover2/+

[124] 3D Metric No Histograms Hannover2/+
[168] 3D Metric Yes SA-NDT+PointNet++ KITTI
[134] 3D Metric Yes NARF+BoW Hannover2/+
[133] 3D Metric No LoG+ad-hoc Score Hannover2/+
[60] 3D Metric No ISHOT+Voting AV Driving

[166] 3D Metric No Clustering Service Robot
[36] 3D Metric Yes Random Forest KITTI

[105] 3D Metric No Histogram of Normals AV Driving
[44] 3D Topo-Metric No Objects+Subgraph ID Service Robot
[18] 3D Topo-Metric No Moment Grids+Voting AV Driving
[32] 3D Topological No NBLD+Voting KITTI/+

[175] 3D Topological No SURF+ad-hoc Score Service Robot
[63] 3D Topological No M2DP KITTI/Freiburg/+
[43] 3D Topological No Planes+Subgraph ID Service Robot

Table 3: LCD systems designed for 2D or 3D depth information

3.3 Takeaways and Trends

Through analysing these tables and reading the individual papers some trends become clear. First, the
precision-recall curves for the state-of-the-art in topological place recognition or loop closure in some
of the easier domains are impressive. However, there is still a lot of room for improvement in more
challenging scenarios. Second, hand-crafted approaches are still extremely popular. Although on
the rise, there is room for many more machine learning techniques, particularly those that combine
different specialized models instead of creating a single end-to-end model or using machine learning
only for feature extraction. Third, there are very few approaches which explicitly model world
dynamics, such as lighting or seasonal change. Some data sets contain such changes in which case the
model may learn some of these mappings implicitly. However, this leaves the question of how well the
method generalizes to other data hard to even hypothesize about. Moreover, many of these dynamics
are not tested simultaneously, whereas they will almost certainly be encountered simultaneously
during deployment. This is understandable since many of the standard computer vision data sets were
not designed with LCD systems in mind.

Nonetheless, standard data sets are invaluable tools for LCD researchers. Current prominent data sets
such as KITTI [51] and New College [132] record timestamped camera and laser data, but do not
offer many labels that describe the underlying conditions that generated the sensor reading. KITTI
offers high-resolution color stereo images as well as velodyne data taken on a vehicle driving around
Karlsruhe on both highway and through rural areas. The New College data set provides stereo and
omnidirectional camera data and laser range data collected by driving around New College campus
and park. These data sets were designed to test trajectory estimation and SLAM among other things
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but were not designed specifically to stress test LCD systems. We want to develop LCD systems
to deal with multiple forms of dynamics, which is a requirement for embodied agents, but we lack
explicitly multi-dynamic data sets. This puts LCD researchers who want to study robustness and
generalizability at a disadvantage since these and other common data sets represent such a small
fraction of sensor signals likely to be encountered in the wild.

Although there are a wide variety of data sets already in circulation, we advocate for yet another
data set - one specifically designed for testing LCD systems. This new data set may well be a
conglomeration of existing data sets with revamped or expanded labeling. Specifically, we hypothesize
that a data set that is easily searchable by each major challenge listed in section 2.2 would drastically
improve both the ease of comparisons as well as the ability of researchers to understand success and
failure causally. Currently, most major data sets do not have labels for meta-data such as night vs
day, season, level of occlusion, weather, etc. at the scale required to support a modular approach to
generally capable LCD.

4 Rethinking the Definition of Success

Currently, topological LCD systems are evaluated based on their precision-recall curves on a subset
of the available open-source data. As other fields in machine learning have realized, including
literature in fields as varied as fairness and bias [57, 48, 15] and long-term autonomy [62, 96], simple
precision-recall curves are not typically sufficient to fully understand the characteristics of a given
method, especially when in the real-world it is always tightly integrated with a larger system. This
is doubly so if it may be used in a high-stakes situation, where its success or failure may impact
other agents in a meaningful way. Below, we outline several obvious ways to improve experiments
commonly run on LCD systems.

4.1 Not All Loop Closures are Created Equal

Figure 3: Example loop closure performance. Green and red cameras represent true positives and
false negatives, respectively. The position of cameras roughly follows the vantage points in Figure 2.

Given the relationship between LCD systems and the larger SLAM systems that typically invoke
them, there is a large asymmetry in the importance of different types of failure cases LCD systems
may encounter. As highlighted earlier, false positives are usually more difficult to deal with than false
negatives. Additionally, practitioners are often less worried about the precision and recall scores over
the entire database, and instead worried about the success or failure rate on a place by place basis. For
instance, consider Figure 3. The recall score for the system on the left is about 0.54, while the recall
rate for the system on the right is about 0.38. However, in practice the system on the right will likely
experience lower error since the time between loop closure events is generally lower. By measuring
precision and recall over the entire data set, not only does it make it difficult to evaluate the quality of
the algorithm, but it also obfuscates obvious areas of improvement for future researchers.

The misalignment between precision-recall scores and an accurate evaluation of a system’s likely
effectiveness in the real-world is emblematic of a longstanding tension between explicit or direct
tests and implicit or indirect tests. These notions often correlate strongly with unit tests (testing a
small part of code for specific functionality) and integration tests (testing how multiple large pieces
of code interact), and this tension is by no means unique to LCD. What we are really interested in is
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the system’s overall performance; can it complete the tasks asked of it safely and efficiently? This is
the integration test, testing whether all components are working together harmoniously. However,
what we are often conducting during experiments are forms of unit tests; does the system realize
that these two specific images contain the same object? Unit tests are incredibly useful, but they
alone are not sufficient. Often, integration tests can uncover systematic shortcomings that are not
visible to individual unit tests. As robotic systems grow in complexity and their applications grow in
scale, researchers will need to become adept at designing and running integration-style experiments
in addition to baseline unit experiments.

4.2 What Does it Mean to Recognize an Invariant?

Loop closure detection, at its core, is about detecting invariants in an environment external to the
agent - an environment largely outside the agent’s control. The collection of data sets under many
different sensing conditions is an excellent start to empirically investigating invariants and their
distribution in different operating environments. There have been some truly massive data collection
efforts, and we acknowledge their utility in bringing LCD research to its present state. However,
there are limits to this strategy. Gathering enough training data to cover all of the different sensing
conditions outlined earlier is becoming unsustainable.

We hypothesize that developing generative models of performance, or, at the very least, enabling
systems to generate explanations grounded in world dynamics regarding why the system succeeded or
failed in a particular instance, will be an important step in developing generalizable systems. As data
sets be come larger and algorithms more complex, the random fluctuations in performance between
huge models trained on slightly different data will present an obstacle to effective evaluation, as has
already happened in reinforcement learning [64, 68].

Some papers engage this challenge, comparing different methods for place recognition on data from a
UAV instead of a car [167]. They found that viewing angle changes contributed most to decreases in
performance, whereas the methods seemed to be fairly robust to illumination changes. However, we
believe that these questions regarding generalizability are indicative of other fundamental questions
about what the system is actually learning. Whether systems are learning the underlying reasons
that something appears to be invariant or whether they are just learning by counting is an incredibly
important distinction with respect to the system’s ability to generalize.

One of our primary arguments for the claim that multiple systems reasoning about different affects
are superior to one big network is that multiple specialized systems make it easier to generate
explanations. The provenance of different factors in the reasoning process becomes clearer. Moreover,
it is easier to conduct proper integration and ablation tests in such setups since there are fewer shared
components. Smaller models have many other advantages, including needing less data to train, using
less memory, faster evaluation times, and faster training time.

5 Navigating a Human World

Long-term autonomy (LTA) is widely regarded as one of the goals of research on robotics and
artificial intelligence, and some have argued for a re-prioritization of efforts in LTA systems towards
‘learning via interaction’ and ‘systems-level integration’ [79]. In modern robotics architectures, there
are few direct analogs between robotic sub-tasks and human sub-tasks. LCD is a notable exception,
and this presents a unique opportunity to conduct a new breed of experiment. The goal of many LCD
systems is to recognize invariants in human environments, and it therefore seems likely that we can
learn a great deal by studying human navigation and exploration.

We propose a set of new research initiatives which aim to improve the performance of LCD systems
by comparing the relative importance of different features in the LCD system to the importance as
indicated by a human navigating the same environment. This type of experiment has many variations,
including having a human tele-operate a robot and perceiving only the robot’s raw sensor data, or
only the robot’s memoized feature representation, and analyzing the gaze patterns of the humans
against different features visible to the robot. Other versions include experiments where different
sets of data are given to different groups of humans and their ability to reconstruct the topological or
geometric structure of the environment is measured as a function of the different features available.

10



Situational awareness for human subjects in some experiments is expected to be critical and because
of this there is also potential for collaboration with researchers studying virtual and augmented
reality and developing new human-robot interfaces. This adds an unfortunate level of complexity
to these experiments but has the potential to benefit both LCD researchers as well as HRI and HCI
scholars. A Particular challenge we foresee is representing memoized data appropriately, specifically
for visualizations. Experiments with communicating memoizations also open up possibilities for
non-visual interfaces, such as those using audio or haptic signals.

This line of experimentation may lead to many new validation methods for understanding what LCD
systems are learning. In particular, it could lead to sample efficient learning and development cycles
since information from humans is usually very directed. Moreover, the benefits of these experiments
are likely to influence other human-related fields as well, such as semantic mapping [76, 88], where
robots try to infer the purpose of a given location in addition to its geometric or topological properties
with respect to the rest of its environment.

6 Evaluating Intelligent Systems

Many sub-fields of artificial intelligence point to a problem or collection of problems as being the
holy grail for that sub-field. For example, many natural language processing researchers consider
understanding figurative language to represent a significant milestone in natural language understand-
ing [41, 123, 75]. Here, we argue that LCD can and should be the measuring stick for many machine
learning, artificial intelligence, and robotics initiatives.

First, however, we want to address a growing body of work focuses on learning end-to-end visual
motor policies for indoor navigation via deep neural networks [162]. In these systems, localization
and mapping are not represented explicitly and are instead latent via recurrent networks, or are
represented in the input itself in the form of large sequences of sensor data. There are several ways
to view the relationship between these systems and traditional SLAM systems. First, when initially
exploring an environment, there is no available data and so these types of systems cannot be used.
However, in a thoroughly explored and mapped environment, such systems may be more robust to
noise and dynamic scene changes than traditional localization approaches. In this view, they are less
at odds and more complimentary. Second, and more importantly, is the question of generalizability.

It is possible that these end-to-end navigation policies are implicitly solving loop closure detection
or re-localization. However, if we want to benefit from this occurrence, more research is necessary
in order to understand how these representations develop and under what conditions we can export
them to other settings. The benefit of such approaches is that these concepts are seemingly learned
automatically, however the downside is that we aren’t able to benefit from their having been learned
in any other context. Both approaches motivate LCD as an important problem to understand. In one
case we would like to know how to extract concepts learned by networks in a more refined manner,
and in the other case we would like to know which concepts we can learn directly and how well we
can learn them.

To truly solve loop closure, with human-level precision, recall, and generalizability, what kind of
concepts about the world would our LCD system need to understand, either statistically or explicitly?
Certainly, all of the concepts in section 2.2 must be mastered. However, these concepts are just
specific instances of general types of abstractions and happen to span a relatively large set, including
geometric abstractions, temporal abstraction, and abstraction over dynamic processes in nature. We
hypothesize that loop closure detection offers a sort of ‘sweet spot’ for targeting the next generation
of intelligent systems and has many positive characteristics in this respect.

6.1 Accessibility and Control Over Experiments

Although non-trivial to evaluate holistically, it is easy to measure success or failure on individual
problem instances. Compared to, for instance, determining if an image was properly captioned, an
article was properly summarized, or a piece of text was transformed from one literary style to another,
LCD performance at the instance level is well-defined and straightforward. It is also easy to modulate
the difficulty of the test environment or test data. This could be made significantly easier with the
availability of additional data sets, but nonetheless this is also straightforward. Concepts such as
weather, seasons, day vs. night, etc. can be tested independently. This is an important property that is
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difficult to control for in many other domains and also supports the development of modular LCD
systems where different concepts are addressed by different sub-systems.

6.2 Scope and Specificity of Sub-problems

The set of concepts required is large but not overly broad. There are many concepts affecting
appearance in Figure 2, but individually their effects on the images are well-defined. These concepts
are also specific instances of abstractions that we want intelligent systems in general to master.
Generalizing over various timescales and over various geometries is a central component of human
problem solving, and LCD presents an excellent test bed for developing those capacities in machines
in a limited sense. LCD also provides opportunities for experimenting with methods for both modeling
and systems integration since each concept could be modeled independently and the resultant models
combined to form a working system. Research on the formulation of novel individual models as well
as architectures for model composition would be applicable.

6.3 Potential for Impact and Applicability of Existing Research

Most abstractions required for general loop closure have received considerable attention as compo-
nents of other problems. We have mentioned several times that LCD bears resemblance to many other
machine learning problems and we cannot stress this enough. Many of the sub-tasks in LCD systems
appear in other areas of research, and we are confident that advances in LCD algorithms can impact
other machine learning endeavors and vice-versa. LCD offers opportunities for discovery with respect
to both artificial and biological intelligence. Processes which have such strong analogs between
humans and robots are not common, and LCD provides a well-defined task for comparative studies.
Lastly, LCD is incredibly useful in its own right given its importance for performant mobile robots.
Mobile robots simply cannot operate for extended periods of time in large, complex environments
without some form of loop closure or re-localization.

In summary, we believe LCD requires a diverse set of capabilities that are well-enough defined to
design a research agenda around, but also ambitious enough to make it a plausible starting point for a
truly generally intelligent system. We want to motivate the application of advances in other domains
to LCD, and in particular we want to encourage research that probes the underlying capabilities of
modern machine learning systems. An example of such work investigates what convolutional neural
networks are learning (semantic appearance vs specific location) and where within the architecture
they are learning it [136].

7 Conclusion

We want machine learning researchers to view LCD not as an odd by-product of a robotics optimiza-
tion problem, but as a unique opportunity to test and explore the boundaries of the state-of-the-art for
learning many different abstract concepts. This paper presents a brief overview and contextualization
of the loop closure detection problem and its situation within mobile robotics and goes on to explore
new ways to improve experimental design of LCD systems and generate more interesting research
questions. Finally, we make an argument for the importance and uniqueness of loop closure detection
as a stepping stone to building generally capable, intelligent, embodied systems.
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