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Abstract

Opponent modeling is the ability to use prior knowledge and observations in order to
predict the behavior of an opponent. This survey presents a comprehensive overview of
existing opponent modeling techniques for adversarial domains, many of which must ad-
dress stochastic, continuous, or concurrent actions, and sparse, partially observable payoff
structures. We discuss all the components of opponent modeling systems, including fea-
ture extraction, learning algorithms, and strategy abstractions. These discussions lead us
to propose a new form of analysis for describing and predicting the evolution of game states
over time. We then introduce a new framework that facilitates method comparison, ana-
lyze a representative selection of techniques using the proposed framework, and highlight
common trends among recently proposed methods. Finally, we list several open problems
and discuss future research directions inspired by AI research on opponent modeling and
related research in other disciplines.

1. Introduction

The goal of this survey is four-fold. First, we present a comprehensive review of work
on opponent modeling in adversarial domains. Second, we present a new mathematical
lens through which to understand and analyze the interactions of two or more strategies
or policies. Third, we introduce a common framework by which to compare and evaluate
opponent modeling techniques. And fourth, we discuss open problems in opponent modeling
and areas for potential research, given the current state-of-the-art.

Work on opponent modeling has been used in a number of real-world applications, in-
cluding professional sports such as football, basketball, and tennis, military tasks such as
formation prediction and patrol behavior, and even video game design (Ontanón et al.,
2013; Bakkes et al., 2012). These techniques have also been applied to a variety of basic re-
search initiatives, robot soccer and its variants chief among them. In theory, many of these
domains can be modeled using Partially Observable Stochastic Games (POSGs), and under
certain conditions POSG solvers can find provably optimal strategies. However, many sce-
narios of interest are either so complex that the resultant POSGs become intractable, or do
not have payoff functions that can be written down, either because they are too complicated
or because they are simply unknown. These types of scenarios require a different approach.
Instead of modeling the problem completely and computing the optimal strategy a priori,
opponent modeling research uses data gathered from past experience, or even online, to
complete or refine models of opponent behavior which are only partially predefined. Ad-
ditionally, some interactions may support multiple incompatible equilibria, and detecting
which actions are compatible with the current equilibrium requires opponent modeling.
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The academic literature has cited many potential applications for opponent modeling
research, and in an effort to simplify discussion and comparison of different techniques and
concepts we will use a running example. RoboCup (Kitano et al., 1997) is an international
robot soccer competition held annually, in which teams of robots compete against each other
in games similar to the sport of football (soccer) played by humans. Although RoboCup
and its various divisions exhibit differences from other opponent modeling applications, it
retains many of the fundamental properties that make it a challenging and useful domain.

Principally, these properties include continuous actions, stochastic actions, concurrent
actions, a sparse and partially observable payoff structure, and in some RoboCup leagues,
decentralized coordination of multiple agents. For example, the drive goals sent to robots
are continuous position or velocity variables (x, y, θ) and (ẋ, ẏ, θ̇), respectively. Desired
directions and velocities for shots and passes are also continuous variables. Moreover, when
robots execute these drive or kick actions, the outcomes are stochastic, described by a
probability density function over real-valued robot or ball position and velocity variables
at some future time. Because shots where a goal is scored are the only event with a direct
effect on the victory condition, the payoff structure is sparse, with most actions having zero
immediate payoff for either team. Additionally, even if an evaluation function that produces
payoff estimates for non-goal actions is available, the optimal form of such a function is not
generally agreed upon, and agents do not know the functions their opponents employ.

Unsurprisingly, these properties have attracted the attention of many researchers study-
ing opponent modeling, and the RoboCup simulation league in particular has supported
a variety of opponent modeling research (Pourmehr & Dadkhah, 2011). From here on we
will illustrate concepts using RoboCup-based examples, and because of this grounding we
will refer to the set of variables relevant to decision making and prediction, both fully and
partially observable, as the ‘game state’, Y . Although most of the research presented in this
survey does not study problems exhibiting all of the above properties simultaneously, for
instance some approaches assume discrete actions, deterministic actions, turn-based play,
etc., we nonetheless believe there is valuable perspective in studying how problem formula-
tions evolve to exploit additional information or certainty along various dimensions of the
problem. Some of this research is also discussed by Albrecht & Stone (2018), although we
focus more heavily on adversarial domains and in particular on how various approaches
model the evolution of the game state.

The high degree of specialization required for individual opponent modeling approaches
to work well in practice often obscures trends and patterns present in the literature. Fur-
thermore, as individual papers focus on domain-specific aspects of their application, it can
be difficult to identify chronic limitations or uncover implicit assumptions within opponent
modeling research more broadly. We feel there is potential for substantial advance in oppo-
nent modeling research, especially as unsupervised learning techniques continue to improve,
and that many real-world problems such as military operations, conservation efforts, and
video game entertainment will benefit significantly from progress towards more performant
opponent modeling systems. Moreover, many other multi-agent application areas may ben-
efit from advances in opponent modeling since these domains often still require modeling of
another agent’s hidden states. Conversely, we also argue that insights from other fields of
research can spark innovation in opponent modeling.
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2. Opponent Modeling

Research on opponent modeling has a long history, beginning in 1944 when John von Neu-
mann and Oskar Morgenstern introduced the idea of game theory (Von Neumann & Mor-
genstern, 1944). Originally applicable only to zero-sum games, game theory concepts are
now used to reason about a wide array of scenarios and have influenced the formation of a
large number of related fields, including what we now recognize as opponent modeling. In
practice, even the term ‘opponent modeling’ has been expanded beyond its denotation to
include instances which are not strictly adversarial and in which some cooperation can be
beneficial (Baarslag et al., 2016).

In this survey we define opponent modeling as the ability to use prior knowledge and
observations in order to predict the behavior of one or more agents, whose internal states
may not be fully observable, within the context of an adversarial game. Under this defi-
nition, both predicting a single opponent robot’s position one time-step into the future, as
well as predicting whether or not an opponent team’s strategy will be, for example, aggres-
sive or defensive in the second half, are forms of opponent modeling. Opponent modeling
systems may be designed or trained such that they are prepared for arbitrary opponents,
or opponents that operate under certain assumptions, such as rationality. In both cases,
opponent modeling systems may be used against a specific opponent not known a priori,
or be designed to be robust to any opponent in the assumed distribution. In the first case,
an optimal strategy is the strategy that is best (under one’s preferred definition of best)
against the initially unknown or uncertain opponent strategy. In the second case, an opti-
mal strategy is one that is best in expectation over all possible opponents. In this paper,
these distinctions, when relevant, should be clear from context.

Opponent modeling approaches, regardless of the optimality criteria, or how abstract
the predictions ultimately are, often make the following set of assumptions.

A.1 One of the following must hold: (1) There is no unique, optimal way to play the game,
or (2) there is a unique optimal strategy, but it is unknown, or (3) there is a known,
unique, optimal strategy, but the opponent is deviating from that strategy.

A.2 There is an observability partition over the game state Y = YM ∪ YH , where the
modelling agent cannot observe members of YH , but can observe members of YM .

A.3 YH may contain variables representing not only the immediate state of the environ-
ment, but also aspects of the opponent decision making process, such as plans, strate-
gies, or intentions. Through interaction, observation and inference, the modeler can
obtain information about the hidden variables YH .

A.4 The level of abstraction chosen by the modeler captures this information and facilitates
a better estimation of the hidden state YH .

A.5 At the core of every opponent modeling approach is the expectation that the opponent
strategy can be exploited and that more accurate estimates of YH will produce superior
strategies.

We should note that this definition captures several informatically distinct opponent
modeling problems. Perfect information games, such as Chess or Go, may restrict the
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types of variables present in YH , but nonetheless fall under this definition. For example,
YH may contain information about the tree pruning strategy in a tree-search Chess agent
which could be exploited by setting up tactics from positions which are less likely to be
expanded at search time. Partially observable games may contain private information but
result in fully observable actions, such as in our robot soccer example where teams may
select pre-determined plays in private, but both teams receive the same state information
from a common vision system. Alternatively, many video games, such as Starcraft, have a
fog of war, where many actions are also unobservable or partially observable. These types
of games usually expand the variables in YH to contain more obviously strategic pieces of
information, such as the composition or location of one’s army.

Of particular importance in this list is A.5. This assumption is so universal that it is
rarely stated explicitly. However, it is often tedious to measure directly, and unfortunately
many studies do not report experimental results that answer this latent hypothesis. If op-
ponent exploitation is the purpose of an opponent model, then overall system performance
should be the experimental target rather than intermediate predictions or outputs of an
opponent model. This is an important distinction since different methods of exploitation
may themselves be exploited, and computing these methods often involves significant com-
pute or memory resources which may not be available online — a limitation that earlier
research on opponent modeling within adversarial search was keenly aware of (Donkers,
2003; Sturtevant, 2004). In fact, humans have been shown to generate strategies in the
game rock, paper, scissors which allow exploitation, but which their opponent does not
have the ability to recognize and exploit (Brockbank & Vul, 2021).

Furthermore, depending on the information captured by a given opponent model, the
best-response in the long run, given the model’s output, may not be to immediately exploit
a perceived weakness. Understanding the value of the information provided by a model
cannot be done by evaluating the model outputs in isolation, they must be evaluated in
situ. Such setups confer many benefits. Although most papers we survey do not focus on the
iterative design of strategic agents, opponent modeling under this definition may still play
a role, aiding developers in uncovering different weaknesses or tendencies or even providing
deeper strategic understanding of a game by highlighting hidden or emergent structure.

Clearly, these assumptions admit a range of possible solutions, which we explore in the
following section. Some approaches are specific to certain games and some have potential to
be generalized to a variety of applications. First however, we make a case for the necessity
of opponent modeling approaches as opposed to more heavily model-based approaches, for
games such as robot soccer. A natural first attempt to model adversaries in robot soccer
would be to leverage the extensive work already done in game theory, where a large number
of games have been studied. Indeed, optimal solutions can be computed for many classes of
games (Carmel & Markovitch, 1996c; Bowling & Veloso, 2001; An & Sandholm, 2003), some
of which are complex enough to model real-world phenomena (Shieh et al., 2012; Pita et al.,
2008). Related work also includes approaches for opponents which can change strategy over
time (Powers & Shoham, 2005) and 3-player games (Ganzfried et al., 2018). Recent work
introduces several forms of counterfactual regret minimization (Farina et al., 2019; Brown
& Sandholm, 2019; Davis et al., 2019) and deep reinforcement learning (Brown et al., 2020)
to find Nash equilibria. However, it has been shown that computing optimal strategies
when playing a limited lookahead opponent in an imperfect-information game is NP-hard
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in all but the most restricted cases (Kroer & Sandholm, 2020). Moreover, many of these
approaches require several pieces of information, such as sets of potential agent strategies,
to be observable for all players, which is not the case in robot soccer. Furthermore, even
those which do not rely on observable opponent strategies still require a known set of actions
and rewards. In general, these sets may be unknown or difficult to compute.

One class of games, partially observable stochastic games (POSGs), can capture many
important complexities (having multiple agents, partial observability, stochasticity, real-
valued rewards, etc.). Although POSGs, which are closely related to decentralized par-
tially observable Markov decision processes (Dec-POMDPs), can be solved exactly for small
games (Hansen et al., 2004), in all but the most special cases exact POSG and POMDP ap-
proaches are intractable (Bernstein et al., 2002; Mescheder et al., 2011; Emery-Montemerlo
et al., 2004; Ng et al., 2010; Egorov et al., 2016). Approximate POSG solutions exist (Pon-
sen et al., 2011; Ceren et al., 2021), but even approximate solutions are often still too
computationally intensive. Often, finding an equilibrium strategy is not required to pro-
duce reasonable behavior. In this case, interactive POMDPs (I-POMDPs) have become
popular, offering a way to model other agents’ internal state. However, I-POMDPs are
more complex than POMDPs, likely to have double exponential complexity even under
some simplifying assumptions (Seuken & Zilberstein, 2008), and most work focuses on ei-
ther state aggregation (Rathnasabapathy et al., 2006; Zeng & Doshi, 2012; Sonu & Doshi,
2015), or approximate solutions via Monte Carlo methods (Doshi & Gmytrasiewicz, 2009;
Ng et al., 2012; Panella & Gmytrasiewicz, 2017) in order to make them tractable. In fully
observable cases, nested MDPs may efficiently approximate I-POMDPs (Hoang & Low,
2013). Thus, the descriptive power of POSG-based and POMDP-based approaches is often
too computationally demanding for many applications. Moreover, carefully developed and
fine-tuned models of particular games rarely generalize or transfer well.

Another class of model-based approaches eschew comprehensive strategy understanding
in favor of solving a simpler, more relevant problem. Work in plan recognition (Sukthankar
et al., 2014) and goal recognition infers only the agent’s current plan or goal. Because these
techniques do not need a payoff matrix, they may be applied to tasks where joint action
spaces are large, actions are taken asynchronously, or where payoffs cannot be calculated
easily. When potential plans can be enumerated, a plan library can be used to match
observations with hypothetical plans (Geib & Goldman, 2009; Kabanza et al., 2010; Zhuo
& Li, 2011). However, this is not possible in many domains. To overcome the limitations
of plan libraries, plan recognition can be reformulated as inverse planning (Baker et al.,
2007), which allows the application of planners to discover potential agent plans (Ramırez
& Geffner, 2009), distributions over plans (Ramırez & Geffner, 2010; Zhuo et al., 2012), and
belief states within a POMDP agent (Ramırez & Geffner, 2011). These methods extend
the applicability of plan recognition, but at the cost of significant compute resources.

A number of approaches have been proposed to improve plan recognition performance
using ideas such as goal graph (Hong, 2001) analysis, pruning heuristics (Yolanda et al.,
2015; Vered & Kaminka, 2017; Masters & Sardina, 2017), landmark (Hoffmann et al., 2004)
detection (Pereira et al., 2017; Pozanco et al., 2018), and even meta reasoning about the
time required to recognize symbolic plans and whether to take an action that could dis-
ambiguate plans (Fagundes et al., 2014). Unfortunately, these approaches still have several
major drawbacks. First, they assume optimal agents, which violates the assumption that
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optimal behavior is unknown, non-unique, or not being followed. Non-optimal agents have
been studied (Keren et al., 2015; Tian et al., 2021a; Masters & Sardina, 2021), but so far this
has not resulted in more effective algorithms for plan recognition. Second, all the methods
mentioned above require an accurate model of the agent’s internal decision making process,
and many require noiseless observations. Third, plan and goal recognition algorithms alone
do not allow generalization, since they are not designed to infer general properties of oppo-
nent behavior. These requirements prohibit the application of plan recognition to domains
where either the internal state of the opponent is unknown, or for which an agent’s decision
making process is not modeled explicitly.

Recent advances in tracking technology and both supervised and unsupervised machine
learning, coupled with the clear need to move beyond the present limitations of model-based
approaches, have given rise to a growing number of techniques for opponent modeling. The
remainder of this survey is dedicated to the classification and discussion of these techniques,
as well as an overview of open problems and future research directions.

3. Overview of Existing Techniques

We find great diversity in the design and implementation details of opponent modeling
systems even among approaches with similar applications. Although many papers focus
most heavily on the mathematical models used for inference or predictions, in practice
these models are not used in isolation. Rather, they are part of an entire data pipeline
with potential constraints on both the input and the output. In fact, the class of inference
algorithm is often the dependent variable in a system, constrained by the capabilities of the
data pre-processing system, the quantity and quality of expert domain knowledge available,
and the needs of the action selection module that uses opponent predictions. Our analysis
has led us to identify three principal axes along which opponent modeling approaches vary.

1. Method of Data Collection: The method used to extract or pre-process data from raw
initial input to be used by the learning algorithm. For example, features from a robot
soccer match may be extracted by manually annotating footage of a game.

2. Learning Algorithm: The specific learning framework, such as support vector ma-
chines, decision trees, or neural networks, used to predict opponent state or behavior.

3. Level of Abstraction: The state space within which prediction and classification oc-
curs. This may range from predicting the low-level actions of a single member of an
opponent’s team to classifying an entire team’s collective behavior.

The ultimate effectiveness of an opponent modeling system is a complex function of
all three variables. In the following subsections we describe the tradeoffs between different
abstractions, learning algorithms, and data collection methods as they pertain to opponent
modeling systems. Figure 1 situates behavior prediction algorithms in a generic opponent
modeling pipeline. Here we should highlight the fact that the “best response” to an inferred
opponent plan is not always to immediately exploit it. Not least because computing an
exploiting response may take time, but also because showing the opponent that you have
learned to exploit their strategy may sacrifice chances for greater exploitation later in the
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Figure 1: Overview of an opponent modeling pipeline. All opponent modeling systems be-
gin with data gathered from previous gameplay, gathered during operation, or both. Most
systems require a pre-processing step where data is augmented or transformed using fea-
ture extraction or segmentation and labeling techniques in order to properly format it for
subsequent learning or inference. Some pipelines use both features and labels. Behavior
prediction is either done directly or is preceded by a classification step, where opponent
behavior is mapped to an abstract class and then the class identity is then used to predict
behavior. Last, the predicted behavior is used to compute a response. Experiments mea-
suring the efficacy of responses based on behavior prediction, rather than the accuracy of
the prediction itself, are under-represented in the literature.

game. These chances could come through further refining the opponent model, or through an
information asymmetry where the opponent is unaware of the modeling player’s knowledge.
The compute best response block in Figure 1 is intended as a general process representing
any action taken in light of the new information presented by the opponent modeling system.
That said, most papers surveyed here either assume best responses are played immediately,
if available, or do not discuss potential best response strategies.

3.1 Data Processing and Domain Knowledge Requirements

By their nature, data driven approaches require some processing of raw data in order to fit
a specified input format. The specifics usually rely heavily on both the game and the gran-
ularity at which the predictive component operates. For instance, predicting the position
of a single robot will likely require trajectory information, while predicting an action such
as shoot or pass might require more abstract features such as the given robot’s position
relative to its teammates. Comparing team-level strategies might rely on even higher level
features, such as team centroid or the number of attackers and defenders. Furthermore,
most models assume independence between behavior at the current time or game situation
and behavior in the distant past or in a situation which is semantically different.

These assumptions are the result of applying expert domain knowledge and are valuable
for their utility in simplifying the problem. However, the requirements these assumptions
impose often create new, non-trivial data processing problems. For instance, if offensive
and defensive behaviors are not correlated, then data which comes from an opponent’s
time spent on defense should not be considered when modeling their offense. Opponent
modeling algorithms which operate on sequences of actions impose the requirement that
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Figure 2: Collection of data processing challenges for opponent modeling systems. From
left to right: Robot 3 in blue shows the uncertain, noisy nature of sensor input to most real-
world opponent modeling systems. The pair of robots in the yellow box have an ambiguous
relationship to the play happening to the right. Deciding whether they provide useful
information is challenging. The orange arrows to the far right represent possible trajectories
that robot 5 could have kicked, with the middle trajectory representing what was measured.
Clearly, a pass or shot on goal was intended, but applying the correct label is difficult.

actions be correctly identified and extracted prior to being fed into a learning algorithm.
This is not straightforward. Consider the case, shown on the right side of Figure 2, where
a robot kicks the ball towards the goal, but has a teammate near the trajectory of the ball.
Differentiating between a shot and a pass is critical to modeling the correct strategy, but
can be difficult in practice. Similarly, many opponent modeling algorithms require labeling
a subset of agents as involved or uninvolved in whatever is happening in the game. This
is often ambiguous, as is the case with the number 4 robots highlighted in the center of
Figure 2, and may require a sequence of inputs rather than a snapshot to accurately label.
Moreover, observations in many real-world scenarios are noisy. This is illustrated to the left
in Figure 2, where several samples from a distribution representing the likelihood of robot
3’s position and orientation are shown. Thus, a variety of feature extraction and annotation
systems have been developed in order to deal with some of the front-end problems created
by the needs of the back-end algorithms.

Moreover, there are several different ways in which data can be affected by the collection
process itself. These include whether data is gathered by conditioning labels or selection
processes on certain observable properties (this is the most common), or whether we apply
an intervention to the controlled behavior, thereby breaking the default causal structure to
enforce a property of the game (Meek & Glymour, 1994). There are many other confounders
in data collection, such as non-stationarity, where the opponent also learns or changes its
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strategy over time, or other types of reasoning, such as deception or reasoning using the
theory of mind. We touch on these topics in later sections.

In general, both automated feature selection and extraction as well as data segmentation
are still unsolved problems which encompass large bodies of research in their own right. The
majority of these works fall outside the scope of this survey. In light of the difficulty of this
problem, many opponent modeling systems rely on human experts or manual annotation.
Data is either hand-labeled with game actions or situations, or processed automatically
by expert-designed scripts which use ad-hoc rules for extracting events and features. In
these cases, the features used within the learning framework are fixed a priori. However,
it is not clear that rule-based or hand-annotated feature extraction techniques provide
optimal features for learning opponent models at any level of abstraction. Attempts to
move beyond some of the limitations of manual annotation and ad-hoc feature extraction
are often complicated by the fact that the ultimate design of an opponent modeling system
is usually intimately related to, if not dependent on, the segmentation, feature selection,
and dimensionality reduction tools available, and the complexity of these systems grows
substantially as more coupled components are added.

As a result, a growing number of approaches have begun using unsupervised or clus-
tering techniques for dimensionality reduction (Molineaux et al., 2009), feature selection
using established techniques such as grafting and l1 regularization (Vail & Veloso, 2008)
or relational databases (Bhandari et al., 1997), and segmentation using various spatio-
temporal models (Li & Chellappa, 2010; Takács et al., 2007; Beetz et al., 2005) or Gaussian
mixture models (GMMS) (Perše et al., 2009; Kovalchik et al., 2020). GMMs in particu-
lar have produced some promising results in data exploration. For example, Kovalchik et
al. (2020) estimate shot value in tennis via a simple generative model and a GMM trained
on spatio-temporal data from the Australian Open. However, in general, comparisons be-
tween algorithms using unsupervised or semi-supervised feature extraction and hand-coded
or rule-based systems using expert knowledge have not been performed at any notable scale.

Currently, there is a trade-off between knowledge exploitation and automation in rule-
based data processing systems. The larger and more complex a set of knowledge becomes,
the greater the descriptive power, but the less accessible it is to automatic processing tech-
niques. This seems to be a fundamental characteristic of rule-based systems and some
supervised approaches. Moreover, limitations in current automatic, unsupervised feature
extraction technology may force the use of rule-based features, even though we lack any
evidence to support the hypothesis that rule-based features are ultimately the best features.
We hypothesize that unsupervised approaches to feature extraction such as clustering, rep-
resentation learning, and manifold learning will not encounter this trade-off to the same
extent. Therefore, it is plausible that the performance of opponent modeling systems would
improve across the board given the ability to use complex feature sets which can only be
extracted by unsupervised learning algorithms.

3.2 Choice of Learning Algorithm

A wide variety of frameworks have been applied to learning opponent models from data.
Depending on the quality and amount of expert domain knowledge available, the size of the
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state and action spaces, and the amount of coordination between opponent agents, modelers
tend to employ one of three distinct approaches.

1. Discriminative Role or Strategy Classification: Behavior of one or more agents is
classified according to a pre-existing set of classes. Class labels are then used to make
a more nuanced prediction about future opponent actions.

2. Goal-based Generative Models: Behavior of one or more agents is classified based on
a generative model of how agents achieve their goals. Class labels are then used to
make a more nuanced prediction about future opponent actions.

3. Policy Approximation: A policy is learned for some state space and action space which
approximates the true policy being executed by the opponent. Given a known state,
the approximated policy predicts opponent actions or sequences of actions.

Discriminative models, generative models, and policy approximators have all been used
with varying degrees of success. There is no dominant approach in terms of accuracy, since
the choice of framework is typically constrained by the capabilities of the pre-processing
systems and the availability of expert domain knowledge, both of which differ across applica-
tions. However, we do find a larger volume of discriminative models, perhaps because they
are relatively easier to implement and evaluate. Here we present an overview of opponent
modeling research categorized according to the learning or inference methods used.

3.2.1 Discriminative Role or Strategy Classification

Discriminative models estimate the probability of a variable x given an input y, p(x|y).
In discriminative opponent modeling, x is usually discrete, typically representing possible
categories of behavior as defined by a domain expert. These categories range from individual
agent roles such as attacker or defender (Vail et al., 2007; Sukthankar & Sycara, 2007; Beetz
et al., 2006; Nair et al., 2004; Wendler & Bach, 2003; Li et al., 2009; Biswas et al., 2014;
Devaney & Ram, 1998; Perše et al., 2009) to team-wide plays or strategy types (Laviers
et al., 2009; Laviers & Sukthankar, 2011; Siddiquie et al., 2009; Fukushima et al., 2017;
Kamrani et al., 2016; Riley & Veloso, 2000; Steffens, 2002, 2005; Schadd et al., 2007; Sadilek
& Kautz, 2010; Lucey et al., 2013). One trait shared by all such discriminative approaches
is that future opponent behavior is not directly estimated or predicted. Instead, a proxy
for future behavior, the role or general strategy of one or more agents, is predicted. This
classification is then used by other processes to produce a distribution of possible future
opponent actions and game states.

Support Vector Machines A nice example of this pipeline is the work of Laviers and
Sukthankar (2011) and Laviers et al. (2009), where defensive play types (team-wide strate-
gies) in simulated American Football, such as blitz or coverage, are identified using a sup-
port vector machine (SVM); then, a plan to counter the opponent’s strategy is constructed.
Spronck et al. (2010) also use SVMs to classify players’ preferences for different game ob-
jectives in the game Civilization from sequences of actions, and Fukushima et al. (2017) use
SVMs, along with neural networks and random forests, to create an ensemble of learners
which use position information to identify free kick strategies in RoboCup simulations. Sid-
diquie et al. (2009) and Li et al. (2009) both use hand-annotated footage of real American
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football games to train play recognition systems. The former group uses SVMs, while the lat-
ter proposes a discriminative temporal interaction manifold (DTIM) over which multi-modal
probability distributions corresponding to different play types are learned. The DTIM has
some desirable properties including being view-stable (although not view-invariant) and not
relying on expert knowledge, except for labeling training data.

Case-based Reasoning Case-based reasoning (CBR) is also a popular technique due
to its ease of implementation and the ability of domain experts to supply examples di-
rectly, rather than having to specify rules which describe the behavior of interest. Stef-
fens (2002, 2005) and Wendler and Bach (2003) both employ CBR to identify team strate-
gies in RoboCup using expert-designed metric features and custom similarity functions.
Ahmadi et al. (2003) present a two-layer CBR system in simulated soccer, where the goal
is to predict the position and velocity of all other players at an unknown time in the future,
when possession changes. They accomplish this by comparing sequences of metric features,
including player positions and velocities relative to the ball. In the bottom layer, they use
these features in robot-centric coordinate systems, and in the top layer they use the same
features transformed into a global coordinate system.

Beyond robot soccer, CBR is also popular in video game AI research. Fagan and Cun-
ningham (2003) use CBR along with a plan library to predict plans in the game Space
Invaders, and Hsieh and Sun (2008) learn to predict opponent strategies and unit compo-
sitions in the real-time strategy (RTS) game StarCraft based on the timing of buildings.
Similarly, Weber and Mateas (2009) use the times at which the first technologies, buildings,
and units are researched, built, and trained along with a form of CBR called non-nested gen-
eralized exemplars (Martin, 1995) to predict StarCraft strategies from an expert-generated
set. They also use M5 (Quinlan, 1993) to predict the time the first unit will appear. Farouk
et al. (2017) use CBR to predict the opponent’s strategy in another RTS game, GLest.
One drawback of CBR is that it is exceptionally difficult to evaluate its efficacy relative to
other approaches. Because the performance of CBR systems relies so heavily on custom
functions and features, the question of whether errors are due to imperfect expert-designed
components or shortcomings of the CBR framework in general are rarely answerable.

A number of other approaches to classifying team strategy have also been investi-
gated. Schadd et al. (2007) propose hierarchical fuzzy classification for determining player
strategies in RTS games based on their actions, such as ‘build’ or ‘attack’. Sadilek and
Kautz (2010) use Markov logic networks to identify group events in a real-life capture the
flag game where player positions are given by GPS. A compelling example of incorporating
information-theoretic concepts into feature selection is presented by Lucey et al. (2013),
where Linear Discriminant Analysis is used to identify English Premier League teams based
on spatiotemporal entropy data from manual annotation.

Expert Systems and Metrics The application of domain knowledge to discriminative
modeling is rarely limited to the definition of discriminator outputs. Expert-designed metric
features and sequences of actions, whose discretization and definition themselves require
domain knowledge, are common. Riley and Veloso (2000) use sequences of actions and
decision trees to classify RoboCup strategies according to a predefined set, and Kaminka
et al. (2002) construct tries based on sequences of actions extracted via expert-defined
rule sets. The dependency detection algorithm (Howe & Cohen, 1995) is then used to

287



Nashed & Zilberstein

predict online which previously observed team is playing in simulated RoboCup. Bombini
et al. (2010) also generate sequences of actions via expert-defined rules. An extension of
the apriori algorithm (Esposito et al., 2008) is run on these sequences to find features, and
construct Boolean feature vectors from these sequences. A k-nearest neighbor algorithm
using the Tanimoto measure (Duda et al., 2012) predicts the current opponent from a set
of previously seen teams in simulated RoboCup. Expert-defined features are not unique to
simulated RoboCup. For instance, Kamrani et al. (2016) apply both sequences of actions
and expert-designed metric features within decision trees and neural networks in order to
classify military tactics in simulation.

Attempts to classify single agent behavior within a multi-agent game take largely the
same approach as their team-wide counterparts. Vail et al. (2007) use sequences of expert-
designed metric features along with conditional random fields to identify which agent is
the seeker in a game of tag, and Sukthankar and Sycara (2007) use both SVMs and an
application of Dempster-Shafer theory over expert-designed templates to classify player roles
in a group combat game. Some approaches such as Isaac, introduced by Nair et al. (2004),
construct a hierarchical model, solving multiple classification problems simultaneously under
the same framework. Isaac uses decision trees and probabilistic finite automata to examine
traces of opponent actions and metric features, and then classifies behavior at a variety of
levels including both individual agents and entire teams. Ledezma et al. (2009) also solve
multiple problems simultaneously with their Ombo system. Based on data from RoboCup
simulations, they construct both decision trees and regression trees to predict future actions,
such as kick, or turn, along with their real-valued parameters, such as velocity, or angle.
Ombo uses PART (Frank & Witten, 1998) to label actions and build the decision tree and
M5 to label action parameters and construct the regression tree.

Hand-built discriminative models for single agent classification are also common. Perše
et al. (2009) identify roles by comparing action sequences to manually defined templates
via the Levenstein distance. Biswas et al. (2014) apply a simple and effective model to
RoboCup, where a subset of raw features are matched to behavior templates via an ad-hoc
distance measure to determine an agent’s role, which is then used to formulate a coercive
attack plan. A thorough presentation of the challenges and assumptions made in opponent
modeling systems is given by Devaney and Ram (1998), who use sequences of positions
from US Army training exercises to classify pair-wise relations between soldiers based on
expert-designed rules. Sequences of relations are then matched to templates to infer higher
level activity. Importantly, this algorithm does not need to consider the whole team.

At the boundary of opponent modeling and feature extraction, work by Beetz et al. (2006)
in which expert-defined templates and decision trees are used to label agent actions, high-
lights the importance and challenges of modeling failed actions. Action sequences are at-
tractive inputs to opponent modeling systems since they seem to transform a continuous,
high-dimensional problem into a discrete, lower-dimensional one. However, verifying the
completeness of an action set such that all observations are explainable by some sequence
of actions and acquiring accurate action labels are still unsolved problems.

Game Theoretic Approaches At the other end of the spectrum, research with a clear
lineage back to game theory continues. Wang et al. (2011) propose a game-theoretic ap-
proach that adaptively balances exploitability and risk reduction. The opponent’s next
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action is modeled as a set of possible actions that contain the actual action with a high
probability. In their application to table-tennis, the actions correspond to one of three serve
locations and the response actions are thus setup locations for the return. The algorithm
is ‘safe’ as the expected payoff is above the minimax payoff with a high probability, and
can exploit the opponent’s preferences when sufficient observations have been obtained. In
multi-agent settings, Shen and How (2019b) have used reinforcement learning over belief-
space in Bayesian games to model and respond to multiple potential opponent strategies, or
types. The mapping from belief to action is ultimately a neural network, and the approach
is evaluated on a small grid world domain.

Summary Discriminative approaches are usually intuitive, easy to use, and easy to un-
derstand. However, they also have several serious drawbacks in the context of opponent
modeling. First, the labels generated by these models rarely have meaning in the raw game
state space. Instead, as mentioned before, the labels are proxies for behavior patterns, and
there must be a subsequent process which translates an expert-designed, semantic label
into an actionable distribution over future game states. This process is difficult and often
ad-hoc, limiting the power of discriminative opponent models.

Second, there is a strong assumption underlying discriminative opponent models: the
opponent is choosing from a range of strategies or behaviors which closely match the labels
chosen by the modeler. This is clearly not true in general, and poor agreement between
classifier taxonomy and the opponent’s internal representation will decrease performance of
downstream tasks. Third, discriminative models rely heavily on expert knowledge. From
input features to class labels, many discriminative approaches are only as good as the intu-
ition given to them by their programmers. Automatically generating labels via unsupervised
techniques addresses both of these shortcomings, and we view progress on that front as vital
to the progress of discriminative opponent modeling as a whole.

3.2.2 Goal-based Generative Models

Generative models estimate to joint probability of hidden variable x and observation y,
p(x, y). In practice, generative models and discriminative models often perform the same
function in opponent modeling frameworks. They assign a semantic label to the behavior
of an agent or group of agents, which is then used as a proxy for calculating the probability
of some future state. Generative models allow incorporation of even greater amounts of
expert knowledge, since the relationship between x and y must be explicitly given.

Bayesian Networks A classic example is the work by Intille and Bobick (1999, 2001),
who designed Bayesian networks to predict American Football play types from sequences
of player positions and expert-designed features. Bayesian networks have also been used
by Ball and Wyeth (2003) to classify agent behaviour in robot soccer, and by Riley and
Veloso (2001) who use naive Bayes over sequences of robot positions in addition to a set of
pre-defined models to predict future positions in simulated robot soccer set plays. They also
provide one of the better explicit descriptions of what their underlying model is actually
computing, including explicitly stating the static opponent strategy assumption. Over a
decade later, Bayesian networks remain a popular framework for creating generative oppo-
nent models, as in Wei at al. (2013), who are able to write down a complete parameterization
of a tennis rally, enabling them to predict the outcome of various strategies (eg. types, lo-
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cations, and velocities of shots). Recently, Torkaman and Safabakhsh (2019) use Bayesian
networks to predict build orders in StarCraft by training them on timestamped game logs.
These features are more general than those used by Synnaeve and Bessiere (2011), who
employ EM to label logs for the presence of expert-designed features corresponding to dif-
ferent StarCraft strategies, and then use Bayesian networks to predict strategies online
from a predefined set. Some research using generative models has also been concerned with
modeling the probability that the opponent is being deceptive. In work by Stankiewicz and
Schadd (2009), Bayesian inference over the local board dynamics and statistics from past
matches are used to predict the rank of a given piece (a hidden variable) in the game Strat-
ego. Essential to this process is determining whether the opponent is bluffing, for instance,
by posturing aggressively with a relatively weak piece.

Hidden Markov Models Hidden Markov models (HMMs), a type of Bayesian network,
are also popular generative models for opponent modeling. Intuitively, they align with our
understanding of how many systems, both autonomous and human-dependent, are designed.
A common architecture in robot soccer, for instance, is the skills, tactics, plays paradigm
(Browning et al., 2005), wherein robot behavior is more or less governed by a hierarchy of
internal state machines, whose hidden states are both the object of interest in opponent
modeling and also concisely described by models like the HMM. The idea of a strategy as a
set of hierarchical policies is explained well in work by Bui et al. (2002), who model such a
strategic agent with an abstract hidden Markov model. Sequences of actions and positions
are used to predict which policy, from a predefined set, the agent is following. Saria and
Mahadevan (2004) extend this work to consider multiple agents. A goal-based version of the
above is presented by Willmott et al. (2001), who use hierarchical task networks to predict
opponent goals and subgoals in the game of Go. Blaylock and Allen (2006) introduce the
cascading HMM, another form of hierarchical HMM designed for goal inference.

In addition to being organized hierarchically, HMMs can be used in ensembles to esti-
mate the likelihood of a large number of different internal states simultaneously. Han and
Veloso (2000) use an ensemble of expert-designed HMMs, a subset of which are selected at
each time-step online, to classify the role of soccer robots using sequences of robot posi-
tions. Similarly, Sukthankar and Sycara (2006) identify predefined military tactics using a
combination of template matching via RANSAC (Fischler & Bolles, 1981) and HMMs.

Simulation Some generative approaches do not use exact inference models, relying in-
stead on black-box simulation or expert knowledge. Kuhlmann et al. (2006) use linear re-
gression and knowledge about an automated agent’s formation control in simulated soccer
to solve for parameters of the opponent’s formation given a stream of position data. Butler
and Demiris (2009) compare raw observations to simulation results from a hand-designed
generative model. Using a domain-specific distance function, they infer the internal state of
agents in a military simulation (attack, defend, etc.), as well as the group formation. Floyd
et al. (2017) also use simulations to bootstrap a case-based reasoning system for identify-
ing and classifying enemy combatants engaged in beyond-visual-range air combat. In some
cases, generative models can become very elaborate, as with Shen and How (2019a), where
Markov decision processes are specified for both adversarial and neutral agents, along with
rationality and deception parameters. A neural network is then trained using a variant
of Q-learning which maximizes entropy (minimizing exploitability). The goal is to predict
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whether an agent is neutral or adversarial in a simulated checkpoint scenario. Wang et
al. (2017) study opponent modeling in Phantom Go, a partially observable version of Go.
They propose an algorithm to predict the opponent’s next move which uses sequences of
game states as input to a simulation of the opponent’s own Monte Carlo tree search through
belief space, using quantal response to calculate beliefs.

Summary Generative models do not enjoy the widespread popularity in opponent mod-
eling of their discriminative counterparts. We hypothesize that this is due to the increased
burden of defining the generative process of observable variables. Additionally, many of the
benefits of generative models may be impossible to realize in opponent modeling domains
where knowledge about the opponent is too scarce to build a complete model. Moreover, op-
ponents can inadvertently exploit the construction of a particular generative model simply
by using a different reasoning process than the one modeled.

3.2.3 Policy Approximation

Policy approximation is a special case of function approximation, where the function being
approximated is a policy π : S → A. S is a set of states and A is a set of actions. In some
cases π(s) may map to a distribution over actions instead of a single action. Thus, a policy
approximator seeks the probability that action a is selected given state s, p(a|s). In practice,
policies may be represented in a variety of ways, such as state-action tables, decision trees,
or neural networks, and they may operate on state definitions containing discrete variables,
continuous variables, or a combination. We do not restrict our attention to any particular
policy or state representations. In contrast to both discriminative and generative modeling,
policy approximation directly produces the probability of future game states, since action
probabilities and their impact on the game state can be used without any intermediate step.
Expert domain knowledge can still be incorporated into policy approximation frameworks
in the form of the state and action sets S and A.

The primary weakness of the policy approximation approach is the poor tradeoff between
state-action expressivity and the amount of data and compute resources required to achieve
good approximations. Experiencing every state-action pair is often infeasible for continuous
or even large discrete spaces, and the computation time for many popular methods scales
poorly with the size of the state space. Thus, policy approximation methods for opponent
modeling all deal with these limitations in some way, most often by abstracting the state
space to a reasonable size or by using less expensive and less accurate approximators, such
as those which produce a single action instead of a distribution over actions.

Decision Trees One example of the latter approach is a hand-built behaviour model by
Stone et al. (2000) which conservatively estimates opponent capabilities and the probability
that the opponent could reliably stop a given plan from achieving its goal. In addition to
discriminative classification, decision trees can also be used as policy approximators, as
in work by Visser and Weland (2002) who use a sequence of metric features to predict the
opponent’s next action in robot soccer. Markovitch and Reger (2005) introduce the concept
of policy “weakness”. Weakness is the deviation of an opponent’s policy from that given
by an oracle, which may be a human expert or a more computationally intensive version
of the policy generation algorithm. Given a sequence of actions, they use a decision tree to
predict the opponent’s weakness at a given state online. More recently, Kar et al. (2017) have
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used ensembles of decision trees to predict poaching activity in Queen Elizabeth National
Park in Uganda. Although simple, in practice these models often outperform their more
complicated, game-theoretic counterparts. Previously, Yang et al. (2014) modeled poaching
as a Stackelberg security game using subjective utility quantal response (Nguyen et al.,
2013). An extension of this work, by Rahman and Oh (2018) modulates rewards with
simulated annealing to perplex opponents.

Game Theoretic Approaches Many other modifications to game-theoretic approaches
to incorporate data online have also been explored. Chakraborty et al. (2013) developed
Tommba, an algorithm which, given an informative feature set which is at least as compact
as the action history and a set of strategies which contains the opponent’s true strategy,
can guarantee a certain level of performance against memory-bounded agents. The need for
these assumptions is a result of work by Ganzfried and Sandholm (2011), who show that
a variation of the No Free Lunch Theorem applies to adversarial games. It is not possi-
ble to exploit an opponent’s strategy, by deviating from the equilibrium strategy, without
creating the possibility of being exploited oneself. Although exceptions were later discov-
ered (Ganzfried & Sandholm, 2015), this general tradeoff between exploitation and safety is
sometimes called the “get-taught-and-exploited problem” (Sandholm, 2007), and has been
applied in spirit to non-game-theoretic domains as well (Biswas et al., 2014). The concept
of agent misdirection has also spawned interest in strategies for counter-misdirection (Chen
& Arkin, 2021). In other cases, opponent modelling has been shown to have neutral or
even negative effects on an agent’s expected reward (Zhang et al., 2020). Understanding
the tradeoffs between exploitability and exploitation is still an active area of research, and
in some cases, such as Johanson and Bowling (2009), researchers have found ways to use
data from past games in order to bias strategies away from their equilibria in a manner
that can be beneficial in the short term. Other work has sought bound performance against
unknown opponents (McCracken & Bowling, 2004) or bound the exploitability of one’s own
exploitative strategies (Johanson et al., 2008).

Deterministic Automata Another method for simplifying the inference problem is to
model opponent strategies as deterministic finite automata (DFA). Although finding the
minimal consistent DFA is NP-Complete (Gold, 1978), and even bounded approximation
is hard (Pitt & Warmuth, 1993), finding unbounded approximate solutions that work well
in practice is tractable. Furthermore, as in the case of HMM-based opponent models,
representing systems as DFAs has a certain intuitive appeal. Fard et al. (2007) use a
combination of expert-designed and data-mined payoff matrices to inform action selection
in RoboCup Simulation. Opponent strategy is represented as a DFA, and the problem
is made tractable by identifying cycles within opponent behavior. Rovatsos et al. (2003)
use the US-L∗ algorithm (Carmel & Markovitch, 1996b) to construct DFAs representing
opponent strategies from sequences of actions, and Marin et al. (2005) later extend this
work for use in RoboCup simulation by allowing simultaneous encounters with multiple
agents and adding environmental information, such as the score. Iglesias et al. (2009)
try to detect the deviation of opponent strategies from some base strategy, given examples
of both. They store sequences of actions in a trie, and then prune the trie based on the
frequency with which certain branches are visited. An ad-hoc similarity function is designed
to determine when a detected sequence of actions matches a pattern stored in the trie.
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Abstract Markov Models In contrast to the approaches above, many opponent model-
ing systems do not bypass computational limitations by sacrificing inference accuracy. Since
exact inference in raw observation space is often intractable, these methods use abstractions
over the observation space to create a state space of manageable size. The most straight-
forward example is work by Baez (2015), where sequences of opponent positions are used
to learn transition probabilities in a Markov chain, the states of which discretize a robot
soccer field. Similarly, Kim and Kim (2017) use an action table compiled from opponent
action data to seed a Monte Carlo tree search in a fighting video game. More expressive
models, such as semi-Markov decision processes, are employed by Yin et al. (2016) which,
together with Rao-Blackwellized particle filtering (Doucet et al., 2000), allow them to use
sequences of positions in order to predict the destinations of agents in RTS games.

POMDP Variants Wunder et al. (2011) introduce the parameterized interactive POMDP
(PI-POMDP) in their study of opponent strategy in the Lemonade Stand Game. PI-
POMDPs, and I-POMDPs in general, explicitly model interactions with other agents in
the state space, given some opponent policy. The PI-POMDP allows the interactions be-
tween agents to be modeled considering multiple opponent policies and is shown to uncover
inherent ‘levels’ of reasoning, with higher level strategies correlating with more successful
agents. In a decentralized setting, Hoang et al. (2017) show how macro-action decentral-
ized POMDPs (MacDec-POMDP) can be used to learn distributions of opponent strategies
and formulate policies which perform well against those strategies. The strength of this
approach is the macro-action, which allows efficient abstraction and simplifies the book-
keeping in modeling decentralized systems. It also limits this approach’s applicability, since
it requires expert formulation of macro actions. In practice, POMDP-based approaches
require significant abstraction in order to work on real-world systems.

Deep Neural Networks Neural networks have also been used in a variety of ways to
model opponent policies. Lockett et al. (2007) use genetic algorithms to evolve a population
of neural networks via SharpNEAT (Green, 2004), a variation of NEAT (Stanley & Miikku-
lainen, 2002), which learns to play against opponents in the card game GuessIt (Isaacs,
1955). Opponents are represented as a linear combination of four cardinal strategies, and
the system uses these strategies along with the action history of the opponent to produce a
probability distribution over the next action. Tang et al. (2020) train a neural network in-
crementally online to predict the next action of agents in the fighting game FightingICE (Lu
et al., 2013). Recently, deep Q-learning models have been proposed for opponent modeling.
He et al. (2016) formulate a multitasking Q-learning problem where a representation of the
opponent policy is learned alongside a policy for playing against the opponent. The resul-
tant policy is tested on a simple soccer simulation. Hong et al. (2017) present similar work.
In StarCraft, Synnaeve et al. (2018) use an autoencoder with a recurrent neural network
(RNN) encoder built from convolutional long short term memory (LSTM) cells to predict
unit locations in a downsampled grid and unit types at a fixed but arbitrary time in future,
given full history of partial observations, terrain features, and team factions. Deep learning
offers an attractive alternative to model-building, but on physical systems it is often chal-
lenging to get enough data for deep networks to learn effectively. The tradeoff between the
generalizability of deep learning and the interpretability and robustness of model-building
and model-based systems still presents a challenge, even to experts. Of late, there have
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been many works using deep learning which learn best-response strategies directly, such
as AlphGo (Silver et al., 2016), and thus contain information about opponent strategies
latent within some internal representation. Here, we focus on explicit opponent modeling
systems and thus omit review of systems which indirectly model opponent behavior.

In an attempt to address situations where opponents may change strategies or policies
over time, termed non-stationarity, Chen et al. (2020) train a neural network to reproduce
an opponent’s state-action sequences from a discrete soccer simulator, but add the entropy
of the predicted policy as a regularization term in an effort to avoid over-fitting to the cur-
rent policy. Everett and Roberts (2018) also use neural networks to model opponents based
on observations of past actions. In a real-valued adversarial orchard simulator, they propose
dealing with non-stationarity by swapping between multiple opponent models online, where
swaps are triggered by accumulated prediction error as well as model uncertainty, which is
modeled using Monte Carlo dropout. Zheng et al. (2018) present perhaps the most com-
pelling framework for modeling non-stationarity to-date. Under the framework of Bayesian
policy reuse (Rosman et al., 2016), they model opponent policies via neural networks, and
use policy distillation (Rusu et al., 2015) to bootstrap or hot start network learning online
when a novel opponent policy is encountered.

Summary In general, policy approximation approaches seem promising due to their abil-
ity to estimate future states directly. However, these approaches have an important weak-
ness. Policy approximation directly on the raw game state quickly becomes intractable as
there may be too many unique game states which require observations in order to form qual-
ity approximations. On the other hand, policy approximation on very compact, abstract
states risks washing out important nuances in agent behavior. Policy approximations may
also overfit to a small number of examples, and if the environment is stochastic, the policy
approximator may have trouble distinguishing between likely outcomes and fluke results.

3.2.4 Additional Methods

There are also methods that do not explicitly model opponent behavior or use supervision.
These methods are useful for discovering knowledge about types of strategies different agents
may take (Trevizan & Veloso, 2010; Cliff et al., 2013, 2017; Xu & Julius, 2018), or knowledge
about different patterns which may be present in the raw observation space (Erdogan &
Veloso, 2011; Yasui et al., 2013; Adachi et al., 2016). They are often valuable preliminary
steps in the development of opponent modeling systems, offering additional insight into the
domain which can be combined with expert knowledge.

Clustering Methods One common technique is to use unsupervised clustering to dis-
cover informative features and classes. For example, Adachi et al. (2016) and Yasui et
al. (2013) use hierarchical agglomerative clustering (HAC) (Müllner, 2011) to cluster free
kick strategies based on deployment locations and sequences of actions, respectively. One
particularly compelling approach by Erdogan and Veloso (2011) uses HAC to cluster robot
trajectories, allowing prediction of the eventual goal locations from partial trajectory in-
formation online during RoboCup. This is a good example of using unsupervised learning
to discover class labels. Similar in spirit, Lattner et al. (2005) cluster sequences of expert-
defined actions and metric features using custom distance functions, and then use these
templates to predict subsequent actions in RoboCup simulation. Beyond RoboCup, Hayes
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and Beling (2018) use HAC to cluster build orders in StarCraft. Their analysis shows it is
even possible to distinguish individual players based on the clusters they produce and the
evolution of clusters over time, as different strategies become more or less common during
the course of the game. Alternatively, Xu and Julius (2018) take a top-down style approach,
wherein signal temporal logic is used to express multiple levels of behavior patterns using
player position data from real soccer matches.

Information Theoretic Methods There are also many non-clustering approaches that
can be equally enlightening. Cliff et al. (2013, 2017) analyze sequences of positions of
different sets of agents from RoboCup Simulation to determine which actions are correlated
across agents using Shannon information dynamics. Among the advantages of information-
theoretic approaches is that patterns detected from one opponent may be indicative of
patterns in the game in general and thus transferable to contests with new opponents. Fur-
thermore, they may validate expert-designed features, indicating whether or not they are
truly informative. A nice example of these benefits is seen in work by Trevisan and Veloso
(2010), where principal component analysis is used to generate a number of features. Fea-
tures, which also include the current strategy of the controlled team, are stored as columns
of a matrix E, and when the Frobenius norm of the expression EA − EBW is minimized,
where W is a vector with non-negative entries, the norm is proportional to ability of episode
B to explain episode A. This allows the similarity between strategies to be quantified, and
in their study the method is applied to defensive strategies in RoboCup. Recently, Grover
et al. (2018) propose analyzing the embedded representations of RoboSumo (Al-Shedivat
et al., 2017) agents, trained via an autoencoder, in order to predict the outcomes of differ-
ent matchups. Similarly, Papoudakis and Albrecht (2020) use a variational autoencoder to
learn embedded representations of agents in various problems in the multi-agent particle
environment (Mordatch & Abbeel, 2018) and analyze these representations, in part, by
calculating their mutual information neural estimation (Belghazi et al., 2018).

3.3 Model Abstraction Level

Almost all approaches presented here abstract the observed game state to some smaller
state space. For example, abstracting each agent’s raw position and velocity observations
to a role, such as attacker or defender, via classification. These abstractions can be thought
of as functions which perform a lossy compression and change of basis akin to principal
component analysis or its non-linear counterparts, and thus form a new basis upon which
approximations of dynamics in the original space may be calculated more efficiently.

Abstraction choices within opponent modeling systems are motivated primarily by ex-
pert domain knowledge, which is consistent with the model design process in many other
fields. However, popularity does not entail optimality. As has been observed in many ma-
chine learning applications, the effectiveness of a particular abstraction is correlated with
the degree to which the space of game states can be approximated by a manifold defined over
a set of basis vectors (feature set) produced by the given abstraction, where our game state
Y is again the union of observable state factors and hidden state factors of all agents. That
is, if a feature set does not contain enough information to distinguish between strategically
distinct game states, then learning using these features will not create effective models.
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Abstractions are related to two of the most fundamental questions in opponent modeling.
First, the hypothesis that expert-designed abstractions produce superior approximations to
learned abstractions has not been decided conclusively. Second, it is not clear which level of
granularity is optimal for modeling opponent behavior in robot soccer, or any other similar
game. The question of exactly what opponent modeling systems ought to predict is essential.
Unfortunately, it is also a difficult and tedious variable to experiment with, since redefining
the space of predictions typically means redefining most other components of the system.
Furthermore, these questions present challenges in comparing different opponent modeling
approaches and understanding how different abstraction choices affect performance.

One way to frame the different abstraction choices made by modelers is to recognize
whether predictions are made with respect to a single agent, a subset of agents, or all
agents. For example, in RoboCup one might estimate an individual agent’s role, such as
attacker or defender, in order to predict the subset of the game state with respect to that
agent alone. One might also estimate the likelihood that one robot intends to execute a
pass to another robot. In this case, the subset of the game state for both robots is predicted
as well as the state of the ball. Further, one might estimate the likelihood of a specific play
from a given set, which could produce better predictions for all game state variables under
the opponent’s control. These levels of increasing abstraction form a natural hierarchy, and
some existing systems already presented here try to exploit this structure. Other approaches
have identified similar abstraction hierarchies for single agents executing plans, which are
composed of actions, which in many domains are parameterized by real-valued inputs.

Although there is a clear hierarchical structure in many multi-agent activities, the prac-
tice of modeling adversaries hierarchically is not common. Moreover, there does not seem
to be a uniform strategy for implementing such hierarchies. Some approaches use only the
highest and lowest levels of information, but nothing in between. Others use multiple low-
and mid-level models, but do not combine them to build group-wide estimators. In order
to facilitate comparisons between, and discussion about, opponent modeling systems, we
present a three-class taxonomy of state abstractions for multi-agent opponent modeling.

Definition 1. Given a set of opponent agents O, an atomic abstraction computes an
abstraction function g : {Y t−k

A , . . . , Y t
A} → Z. Here, Y t

A ⊂ Y for all t, and ∀y ∈ YA,
∂Γ(oi)
∂y 6= 0, where Γ(oi) represents the capacity for agent oi to affect state factors.

Example 1. Use only the location of an agent to classify it as an attacker or defender.

Definition 2. Given a set of opponent agents O, a branch abstraction computes an
abstraction function g : {Y t−k

B , . . . , Y t
B} → Z. Here, Y t

B ⊂ Y for all t, and ∀y ∈ YB, ∃i such

that ∂Γ(oi)
∂y 6= 0, where Γ(oi) represents the capacity for agent oi to affect state factors.

Example 2. Use the velocity of multiple agents to classify them as converging or diverging.

Definition 3. Given a set of opponent agents O, a complete abstraction computes an
abstraction function g : {Y t−k

C , . . . , Y t
C} → Z. Here, Y t

C ⊆ Y for all t, and ∀y ∈ YC , ∃i
such that ∂Γ(oi)

∂y 6= 0, where Γ(oi) represents the capacity for agent oi to affect state factors.

Complete abstractions must also be on-to: ∀oi ∈ O, ∃y ∈ YC such that ∂Γ(oi)
∂y 6= 0.

Example 3. Use the average team location to classify a formation as aggressive or defensive.
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Although these definitions use partial differentiation notation most common with con-
tinuous variables, any game state variable, continuous or discrete, is covered under this
definition. Given a discrete variable, we simply use a finite difference rather than a limit
expression when computing the partial derivative, as is common practice in fields like com-
puter vision. These three classes represent the primary methods for applying change of basis
in opponent modeling systems from game state variables to a smaller set of variables, which
often carry semantic meaning to the modeler. This notation makes explicit some impor-
tant distinctions. Opponent modeling systems may use information about the environment
that is not directly controllable by the opponent. The causal source of this information
is distinct from direct observation of opponent behavior and the abstract features gener-
ated from these observations. This same phenomenon can occur between different agents
in a multi-agent setting and communicating this clearly is important to understanding why
different techniques may or may not be suitable for different domains.

The interactions and tradeoffs between different abstraction levels are still not well
understood outside of anecdotal evidence, and quality comparisons between methods are
rare. Specifically, opponent modeling research would benefit from comparisons between
methods applied to the same domain, but which use different abstraction classes. Similarly,
research investigating how abstractions of the same class perform using different types of
features could also significantly advance our understanding of the reliability and generality
of many proposed techniques.

We surmise that, ultimately, hierarchical approaches will be most effective, wherein
specialized classifiers or policy approximators are used for different parts of the hierarchy.
Depending on the exact architecture this may fall under the definition of layered learn-
ing (Stone & Veloso, 2000). Furthermore, as access to data, computing resources, and
effective opponent modeling software becomes easier, we envision hierarchical models be-
coming more tractable. The levels of abstraction defined here map naturally to a hierarchical
structure, and we hypothesize that organizing hierarchical opponent modeling approaches
after this structure will produce stronger results.

3.3.1 Approaches for Learning and Their Relation to Abstraction

If X is the space of raw observations, such as images from a video feed, Y is the game state
space, and Z is the space of an abstracted representation of the game, such as player roles,
most opponent modeling systems can be expressed as composite functions of the form

g−1(h(g(f(X)))), (1)

where f : X → Y , g : Y → Z, and h : Z → Z. f extracts game state features from
raw sensor data, and depending on the game and whether the system is operating in the
real world, may be the identity function. g() takes the raw game state and constructs a
compressed or abstracted version, the definition of which is chosen by the modeler. h()
performs predictions in the space of Z. The study and development of the functions f()
are largely outside the scope of this section, and we assume they are sufficient although
imperfect. In discriminative and generative approaches, g() and h() are separate functions,
while in policy approximation systems, the policy approximator learns p(·) = g−1(h(g(·))).
To be clear, in this notation, g−1() is not the inverse of g() in a strict mathematical sense.
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In fact, g() may not be invertible. We write g−1() to denote a function where dom g−1() =
codom g() and codom g−1() = dom g().

In practice, both determination of Z and design of h() are highly non-trivial, and we
return to a tension we have seen before: the tradeoff between the descriptive power and
completeness of a set of knowledge, and the technical and implementation costs of exploiting
that knowledge maximally. Learning robust functions for g() is usually far easier than
approximating the policy and thereby learning p(·) = g−1(h(g(·))). However, learning
an approximate policy p() removes the need to engineer Z and h() altogether. This is a
familiar story in machine learning, as neural networks have become increasingly good at
learning their own features, eliminating the need to hand engineer feature spaces such as
Z. Unfortunately, relatively few works presented in this survey discuss their choice of h()
explicitly, and many do not validate their approaches with experiments that test the entire
pipeline, leaving the question of whether or not the proposed methods actually create better
opportunities to exploit opponent strategies unanswered.

4. A Foundation for Understanding Game State Trajectories

Over the course of any adversarial engagement, the true game state y∗ ∈ Y will take on a
number of values sequentially, {y∗0, y∗1, . . . , y∗n}, creating a trajectory through the game state
space. Eventually, at time t = n, the engagement will terminate and either restart, as in
robot soccer after a goal is scored, or end permanently, as in after one side has surrendered
or retreated after a military engagement. In either case, it is natural to ask questions about
the dynamics of the engagement. Why does the game state trajectory behave the way it
does? Is there an underlying, application-agnostic theory that can explain what is observed
empirically? Can any such theory provide insights for developing better forward models of
such engagements? As an initial step towards answering these questions, we introduce two
concepts: the strategy manifold, and the strategy gradient.

4.1 The Strategy Manifold

Consider a robot soccer game played by two relatively equal, proficient teams. Here, the
observable state factors are the position and velocity of each robot and the position and
velocity of the ball. Much like matches played by professional humans, the number of states
technically allowed by the rules is much greater than the number of states visited by the
two teams during competition. For example, it is perfectly legal for all players to move into
a single quadrant of the field, but this configuration is never seen in real games. Not rarely,
never. This distinction is important since in many cases it allows us to simplify the models
or representations of the game without sacrificing any model accuracy.

In our robot soccer example, observable state factors exist in RN , where N = (2n)×6+4
and n is the number of robots on each of the two teams. The factor of 6 comes from each
robot having position (x, y, θ) and velocity (ẋ, ẏ, θ̇) state factors. The added 4 is due to the
ball’s state, which has no orientation (θ) term. Randomly walking through this space, one
would expect very few repeated (to within some ε) states due to the high dimensionality.
However, we see a small fraction of states visited over and over again during real games. We
hypothesize that the limited exploration of the observable state space is the manifestation
of a structure imposed on the observable state factors by the hidden state factors.
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Intuitively, this hidden structure can be described by a manifoldM⊆ RN . For example,
consider a game where the state space is defined in R2, and the rules of the game technically
allow any (x, y) state as a valid game state. However, if one or more rules of the game
have an indirect effect such that winning strategies only need to visit states for which the
relationship x2 + y2 = 1 is true, then the effective state space for which an agent needs to
model its opponent can be reduced from all of R2 to some manifoldM⊂ R2, which in this
case describes the unit circle. Clearly, understanding this manifold has many advantages,
dimensionality reduction and informed choice of basis (feature set) chief among them.

Definition 4. An adversarial game with N observable state factors represented by a game
state Y N has a strategy manifold M(R, C, s0, . . . , sn) ⊆ Y N where:

R : The rules of the game.

C : The capabilities of the agents.

si : The strategy or policy of agent i.

Strategy manifolds describe all the reachable states of a particular game, given the rules,
capabilities of the agents, and the respective strategies of each team. Again, consider a robot
soccer match. The rules dictate the size of the field, prescribe a maximum kick speed, and
prohibit certain types of robot-robot collisions among other things. These rules constrain
all possible game state observations in RN to some subset MR ⊂ RN which are allowed
by the rules. Next, we apply the inherent limitations of the agents; the soccer robots have
some maximum achievable acceleration and velocity. Note that the rules do not explicitly
limit these attributes. Rather the limitations are due to the limited capabilities of the
agents themselves. Note also that there may be indirect relationships between the rules and
the capability displayed by agents. For instance, a robot with low acceleration ability and
high maximum velocity may never achieve its maximum velocity on a small field since the
robot needs long distances to accelerate all the way up to maximum velocity. Thus, after
considering both the rules R and the agents’ capabilities C, we see the possible game state
observations are further constrained to MR,C ⊂MR ⊂ RN .

Since strategies may be arbitrarily bad, MR,C is the tightest constraint possible on the
state space for any particular game, given arbitrary competitors. For example, consider
professional soccer leagues and the strategies they employ (long passes and players spread
out over the whole pitch) compared to children’s leagues, where the dominant strategy is for
all players to run towards the ball and attempt to kick it in the direction of their opponent’s
goal. However, if we know at least one of the team’s strategies, we can make even stronger
statements about the characteristics of the strategy manifold by constraining the values of
variables controllable by the team whose strategy we know. Since in opponent modeling
information about one’s own team is often available, this is often exploitable. If we let s0

be the strategy of the control team, we get MR,C,s0 ⊂MR,C ⊂MR ⊂ RN .
Although most opponent modeling research focuses on predicting opponent behavior or

approximating opponent strategy, the concept of the strategy manifold can in principle be
used to learn any singular held out piece of information. For instance, given the strate-
gies and capabilities of all agents, the rules of the game should be learnable through the
same manifold construction process. Similarly, given strategies and rules, agent capabilities
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should learnable. However, we hypothesize that formulations for learning rules and agent
capabilities may be more challenging than simply learning an opponent’s strategy, since it
is generally not possible to assume that given strategies are optimal, whereas it is usually
safe to assume priors on rules or agent capabilities are accurate.

The utility of the strategy manifold is clear for policy approximation approaches, since
it allows better priors for the transition function, but it may also aid discriminative and
generative opponent models. The quality of Z as an abstraction space and g() as an ab-
straction mechanism is related to the ability of states z ∈ Z to both map to strategically
distinct regions of the strategy manifold M ⊂ Y as well as minimize the number of game
states y ∈ Y which are not in the codomain of g−1(). Understanding the extra restrictions
on possible inputs to g(), provided by knowing the strategy manifoldM, can help us design
better methods for g() or even help us determine Z. Making good use of offline compute
resources to validate abstractions for these two properties is something we think will dra-
matically increase the performance of many opponent modeling systems, and the problem
of determining the strategic uniqueness of z ∈ Z in particular seems like an opportunity for
unsupervised algorithms to excel. However, even if Z is chosen well, that is, the compressed
representation of the opponent’s state generally has these properties, effective opponent
modeling still requires accurate prediction, denoted earlier by the function h(). For this, we
introduce the concept of the strategy gradient.

4.2 The Strategy Gradient

While the strategy manifold restricts the set of reachable states given the rules, agent
capabilities, and strategies of the agents, it does not explain how the game state might
evolve from a given starting point. For this, we need the concept of the strategy gradient.

Let Vi(y; si, sj) be a function which maps any game state to a real value in the interval
[−κ, κ], and suppose Vi = −κ for any y ∈ Y in which team i wins and Vi = κ for any
y ∈ Y in which team i loses. Values between −κ and κ may also represent terminal states
in adversarial situations with more than two outcomes. In a deterministic game without an
adversary, or with an adversary that never takes any actions, such as an opponent soccer
team whose players never move, prediction of future game states could be achieved for
arbitrary future times by following the negative gradient of Vi, −∇Vi, until a local minimum
is reached. In a stochastic version of the same game, predicting a distribution over future
game states could be achieved by running repeated trials of gradient descent, moving along
−∇Vi and adding an additional noise term η(σ) at each step, where σ parameterizes the
stochasticity. In this case, the trajectory evolves by −∇V σ

i = −∇Vi + η(σ) every action.

Now, let V ∗ = Vi−Vj , where agents or teams i and j are competing against each other.
We call V ∗ the complete game value function.

Definition 5. Given a complete game value function V ∗, the strategy gradient is ∇V ∗.
The partial strategy gradient is ∇iV ∗ =

[
∂V ∗

∂yi1
, . . . , ∂V

∗

∂yin

]T
, where yi ∈ Y are game state

variables which team i can control.

In this case team i would attempt to perform gradient descent on V ∗, while team j
would attempt to perform gradient descent on −V ∗. However, usually agents cannot di-
rectly affect all meaningful state variables, such as the position of the opponent goaltender
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in robot soccer. So, they will follow their respective partial strategy gradients. Moreover,
in many domains ∇iV ∗ · ∇jV ∗ is often 0, except when both teams have the opportunity to
simultaneously affect some neutral part of the environment or directly affect their adver-
saries. For instance, in robot soccer, when one team has the ball, the other team typically
cannot directly affect the location or velocity of the ball. The only time both teams can
affect the ball’s state is when both teams have a player who is in range to kick it.

If the payoff and dynamics depend on a set of continuous, observable, controllable vari-
ables, and the dynamics and reward are isotropic, then conceptually, the saddle points of the
strategy gradient are a continuous analog of local Nash equilibria for the given encounter.
That is, assuming a starting game state within some basin of attraction, the opponents
would mutually seek the same global game state. The general trajectory of the entire game
state can thus be described by following the strategy gradient, and there are likely small
modifications one could make to extend this analogy to conditions beyond purely contin-
uous variables. Of course due to stochastic actions, imperfect information, or changing
strategies, it is not guaranteed that a particular saddle point would be reached even with
an initial state within the basin of attraction.

This formulation presents two challenges. First, how can we compute V ∗ and ∇V ∗
without full knowledge of the opponent’s strategy and given limited observations? Second,
if the game is stochastic, how can we learn or model σ and η(σ)? To compute V ∗ and
its gradient exactly seems intractable, or at the very least impractical. However, inverse
reinforcement learning and other reward or value function approximation techniques seem
to be reasonable first steps. Additionally, estimates for V ∗ are useful as long as the gradient
points roughly in the right direction, even if the magnitude is wrong.

Estimating σ and η(σ) will require substantial domain-specific knowledge and engineer-
ing. Many agents already use models of their own uncertainty with respect to different
actions, which will be readily available to bootstrap these calculations. Estimating these
quantities for opponents will require new ground to be broken in the subfield of skill esti-
mation, and depending on the domain, may also require new methods for automatic action
identification or labeling. Figure 3 illustrates an example strategy manifold and gradient.

As with the strategy manifold and the definitions of abstraction types, strategy gradients
have been explained and defined assuming continuous variables. However, most real-world
systems will have a mixture of discrete and continuous variables. There are several ways
to handle this. The most straightforward would be to simply assign scalar values to these
variables, and although the intermediate values may not be realized, the underlying struc-
ture and gradient will still be represented. One can always use the finite difference method
where needed instead of a continuous derivative. A more unsupervised approach might be
to create vector-space embedding representations of discrete variables, as is often done using
a neural network.

5. Opponent Modeling Evaluation Framework

The classifications discussed in section 3 are useful semantically, and provide some intuition
for how to design opponent modeling systems under different constraints. However, the
question of how to compare approaches is still an open one. Although opponent modeling
in games featuring some or all of the properties outlined in the introduction has been a
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Figure 3: An illustration of a hypothetical game state and several increasingly restrictive
versions of a strategy manifold. In the top part of the figure, level curves are shown rep-
resenting the value for agent i of every part of the strategy manifold MR,C,s0 . The purple
line travels along the value function for the manifold at some constant value for x2. If agent
i can only affect x1 ∈ Y , then the tangent line to the purple curve represents the strategy
gradient, shown here at at arbitrary point along the line in red.

serious research topic for decades, there has been a persistent lack of consensus regarding the
definition of algorithm deliverables and the formulation of independence assumptions. Here,
we address this by proposing a framework for discussing the deliverables and independence
assumptions in opponent modeling approaches.

Every abstraction level lends itself to a particular suite of algorithmic techniques, but
all approaches are after the same fundamental information: the probability of an opponent
being in some particular state at some time in the future, given some domain knowledge,
some past experiences, and the current state. Formally, for a game beginning at t0 and
currently at time t, where a team of n partially observable agents opposes a team of m fully
observable agents, we write this as

P (O1:n
tp |O

1:n
t0:t, C

1:m
t0:t , C

1:m
(t+1):tp

, Et0:t, E(t+1):tp ,K, T ), (2)

where tp is the desired time of prediction. O1:n and C1:m are the joint states of the opponent
and controlled team, respectively. E is the state of the environment, such as field boundaries,
offsides lines, score, time on the clock, etc. K is any expert domain knowledge, and T is any
transferred knowledge from other similar games. We explicitly distinguish between past and
future controlled team states and environment states because of the common, somewhat
dubious assumptions that opponents will not change course of action even in the presence of
changing behavior by the control team, and that certain future aspects of the environment
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are highly unpredictable. Since many methods do not consider the terms C1:m
(t+1):tp

and

E(t+1):tp , but do consider C1:m
t0:t and Et0:t, we feel this is a more convenient formulation.

We propose this notation because it is general, in that all opponent modeling techniques
can be represented by such an expression, and explicit, because it references the underlying
data being used to train the algorithm, rather than intermediate representations which vary
from technique to technique. This notation also explicitly includes several variables related
to system performance which are often obfuscated by algorithmic details. For example, we
would prefer algorithms which can predict accurately farther into the future to those which
can only predict a short time into the future. This metric is explicit in the given expression,
and is represented by the quantity tp− t. Another easily accessible axis of comparison is the
size of the set of variables being predicted relative to the size of all predictable variables. If
the prediction regards variables O1:x

tp , it is clear from the expression whether 1 : x represents
a single agent, multiple agents, or the entire team. Moreover, stating deliverables in terms
of this expression may also facilitate more careful experimentation and exposition related to
the functions g−1() and h() from section 3.3, since many papers do not state how successful
classification of roles or tactics translates back into belief about the likelihood of future
game states. Lastly, independence assumptions are easy to compare, as determining the
information which a given system operates on is trivial in this framework.

We now compare a number of studies and their proposed techniques across several
dimensions, including the types of features used, the learning algorithms employed, the level
of abstraction at which the predictive component operates, and the equivalent expression
for the work’s formulation as given by the framework we just introduced. Tables 2, 3, 4,
and 5 present comparisons of discriminative, generative, policy approximation, and other
approaches, respectively. Table 1 is a reference for many of the acronyms in the tables.
Note that variables On represent predictions for future states of an entire group or team,
while Ok represents predictions for a subset of the group or team where k ≤ n.

Acronym Definition Acronym Definition

AHMM Abstract Hidden Markov Model NN Neural Network

CBR Case-based Reasoning PCA Principal Component Analysis

DBBR Deviation-Based Best Response PFA Probabilistic Finite Automata

DFA Deterministic Finite Automata PI-POMDP Parameterized Interactive POMDP

DS(D)SF Domain-specific (Dis)Similarity Function RANSAC RANdom Sample And Consensus

DTIM Discriminative Temporal Interaction Manifold RBPF Rao-Blackwellized Particle Filter

EDAhR Expert Designed Ad-hoc Rules RL Reinforcement Learning

EDPM Expert Designed Payoff Matrix RSF Raw State Factors

EM Expectation Maximization SMDM Semi-Markov Decision Process

GMM Gaussian Mixture Model SoA Sequence of actions

HAC Hierarchical Agglomerative Clustering SoMF Sequence of Metric Features

HMM Hidden Markov Model SoP Sequence of Positions

HMMP Hierarchical Multiagent Markov Processes SoSAP Sequence of state-action pairs

MA Manual Annotation SSG Stackelberg Security Games

MDP Markov Decision Process SUQR Subjective Utility Quantal Response

MFS (ED)Model Forward Simulation SVM Support Vector Machine

MKL Multi Kernel Learning TM Template Matching

Table 1: A key from acronyms to jargon, required for compact tables to follow.
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Work TypeofFeature LearningFramework Abstraction: DefOn PredictionExpression

(Ahmadi et al., 2003) SoMF HierarchicalCBR AgentStatex, ẋ (A,B,C) P (On
t+∆t|O

n
0:t)

(Ledezmaetal., 2009) SoA Decision/RegressionTree AgentAction (A) P (O1
t+1|O

n
0:t)

(Spronck&denTeuling, 2010) SoA SupportVectorMachine PlayerStrategy (C) P (On
t+1|O

n
0:t)

(Weber&Mateas, 2009) SoA Case-basedReasoning PlayerStrategy (C) P (On
t+1|O

n
0:t)

(Bombini et al., 2010) SoAviaEDAhR kNN+TanimotoMeasure TeamIdentity (C) P (On
t+1|O

n
0:t, K)

(Kaminkaet al., 2002) SoAviaEDAhR DependencyDetection TeamIdentity (C) P (On
t+1|O

n
0:t, K)

(Hsieh&Sun, 2008) SoA Case-basedReasoning AgentStrategy (C) P (On
t+∆t|O

n
0:t)

(Farouketal., 2017) SoAviaEDAhR Case-basedReasoning AgentStrategy (C) P (On
t+∆t|O

n
0:t, K)

(Laviers et al., 2009) SoP SupportVectorMachine FootballPlay (C) P (On
t+1|O

n
t0:t)

(Laviers&Sukthankar, 2011) SoP SupportVectorMachine FootballPlay (C) P (On
t+1|O

n
t0:t)

(Siddiquie et al., 2009) SoP,play typeviaMA SVM+MKL FootballPlay (C) P (On
t+1|O

n
t0:t)

(Sukthankar&Sycara, 2007) SoA SVM+Dempster-Shafer AgentRole (A) P (O1
t+1|O

1
t0:t)

(Beetz et al., 2006) SoP,SoMF,MA DecisionTree AgentAction (A) P (O1
t+1|O

1
t0:t)

(Riley&Veloso, 2000) SoP,SoA DecisionTree TeamStrategy (C) P (On
t+1|O

n
t0:t)

(Nair et al., 2004) SoP,SoA DecisionTree+PFA Strategy/Role (A,B,C) P (On
t+1|O

n
t0:t)

(Kamrani et al., 2016) SoP,SoA,SoMF DecisionTree+NN MilitaryTactic (A,B,C) P (Ok
t+1|O

n
t0:t)

(Fukushimaetal., 2017) CurrentPositions NN,SVM,RandomForest TeamStrategy (C) P (On
t+1|O

n
t )

(Sadilek&Kautz, 2010) RSF MarkovLogicNetwork SubgroupActivity (B,C) P (Ok
t+1|O

n
t0:t)

(Vail et al., 2007) RSF,SoMFviaEDAhR ConditionalRandomFields AgentRole (A) P (O1
t+1|O

n
t0:t, K)

(Steffens, 2002) SoA,SoP Case-basedReasoning TeamStrategy (C) P (On
t+1|O

n
t0:t)

(Steffens, 2005) SoP,SoMFviaEDAhR CBR+DSSF TeamStrategy (C) P (On
t+1|O

n
t0:t, K)

(Wendler&Bach, 2003) SoMFviaEDAhR CBR+DSSF SubgroupActivity (B,C) P (Ok
t+1|O

n
t0:t, K)

(Luceyet al., 2013) SoP,SoAviaMA LinearDiscriminantAnalysis TeamIdentification (C) P (On
t+1|O

n
t0:t)

(Schaddetal., 2007) SoA HierarchicalFuzzyModels Atk/Def,UnitType (C) P (On
t+1|O

n
t0:t)

(Biswas et al., 2014) RSF TMusingDSSF CurrentAgentTactic (A) P (O1
t+1|O

n
t , C

n
t , C

n
t+1, K)

(Devaney&Ram,1998) Pair-wiseSoP TMusingDSSF SubgroupActivity (B) P (Ok
t+1|O

n
t0:t, K)

(Perše et al., 2009) SoAviaGMM,EDAhR LevensteinDistance OffensiveTeamPlay (C) P (On
t+1|O

n
t0:t, K)

(Li et al., 2009) SoP,play typeviaMA DTIM+EM FootballPlay (C) P (On
t+1|O

n
t0:t)

Table 2: Discriminative approaches

Work TypeofFeature LearningFramework Abstraction: DefOn PredictionExpression

(Riley&Veloso, 2001) SoP NaiveBayesianNetwork AgentPosition (A) P (O1
t+1|O

n
0:t)

(Stankiewicz&Schadd, 2009) SoA Bayesian Inference AgentRank (A) P (O1
t+1|O

n
0:t)

(Synnaeve&Bessiere, 2011) SoAviaEDAhR BayesianNetworks TeamStrategy (C) P (On
t+1|O

n
t0:t, K)

(Kuhlmannetal., 2006) SoMF LinearRegression TeamFormation (B,C) P (On
t+1|O

n
t0:t)

(Shen&How,2019a) SoA MDP+NN AgentRole (A) P (O1
t+1|O

1
t0:t)

(Torkaman&Safabakhsh, 2019) SoA BayesianNetworks TeamStrategy (C) P (On
t+1|O

n
0:t)

(Fagan&Cunningham,2003) SoA CBR+PlanLibrary AgentPlan (A) P (O1
t+∆t|O

1
0:t)

(Ball&Wyeth, 2003) SoP NaiveBayesianNetwork AgentRole (A) P (O1
t+1|O

n
t )

(Leece&Jhala, 2014) SoP,SOA MarkovRandomField ArmySize (C) P (On
t+1|O

n
0:t)

(Wei et al., 2013) SoP,SoA BayesianNetwork+GMM Success ofAction (A) P (O1
t+1|O

n
t0:t)

(Intille&Bobick, 1999) SoP,SoMFviaEDAhR BayesianNetwork FootballPlay (C) P (On
t+1|O

n
t0:t, K)

(Intille&Bobick, 2001) SoP,SoMFviaEDAhR BayesianNetwork FootballPlay (C) P (On
t+1|O

n
t0:t, K)

(Hanetal., 2000) SoP HiddenMarkovModels AgentAction (A) P (O1
t+1|O

1
t0:t)

(Bui et al., 2002) SoPorSoA AHMM+RBPF PolicyHierarchy (A) P (O1
t+∆t|O

1
t0:t)

(Saria&Mahadevan, 2004) SoPorSoA HMMP+RBPF PolicyHierarchy (A,B,C) P (On
t+∆t|O

n
t0:t)

(Sukthankar&Sycara, 2006) SoP,SoMFviaEDAhR HMM+RANSAC SubgroupActivity (B) P (Ok
t+1|O

n
t0:t, Et0:t, K)

(Floydetal., 2017) SoMFviaEDAhR CBR+DSSF Team/AgentRole (A,B,C) P (Ok
t+1|O

n
t0:t, K)

(Butler&Demiris, 2009) RSF,EDMFS Simulation+DSSF Atk/Def,Formation (B,C) P (On
t+1|O

n
t0:t, K)

Table 3: Generative approaches

In all tables each row features one publication, and the features used, learning or mod-
eling framework, abstraction level of the prediction target, and the equivalent prediction
expression are presented in the following columns from left to right. From the tables we can
see that there does not appear to be any particular algorithm that has enjoyed prolonged
success in any domain, with most learning frameworks showing up and disappearing as they
become more or less popular in machine learning in general. This suggests that meaningful
progress towards better opponent modeling systems may require innovation on multiple
fronts and will not be possible via improvement in machine learning techniques alone. Also,
somewhat surprisingly, we see strong preference in discriminative approaches towards using
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Work TypeofFeature LearningFramework Abstraction: DefOn PredictionExpression

(Lockett et al., 2007) SoA SharpNEAT+NN AgentAction (A) P (O1
t+1|O

n
t )

(Synnaeve et al., 2018) SoP RecurrentNN AgentPosition/Type (A) P (O1
t+∆t|O

n
t , E0:t)

(Baez, 2015) SoP MarkovChain NextPosition (A) P (O1
t+1|O

n
t )

(Visser&Weland, 2002) SoMFviaEDAhR DecisionTree AgentAction (A) P (O1
t+1|O

1
t0:t, K)

(Markovitch&Reger, 2005) SoSAP DecisionTree Opp. Weakness (A,B,C) P (On
t+1|O

n
t0:t)

(Kar et al., 2017) SoAorSoP DecisionTreeEnsemble PoachingTargets (A,B,C) P (On
t+1|O

n
t0:t)

(Heet al., 2016) SoSAP DeepRL AgentAction (A) P (O1
t+1|O

1
t )

(Hongetal., 2017) SoSAP,RSF DeepRL AgentAction (A) P (O1
t+1|O

1
t−M:t)

(Hoanget al., 2017) RSF,EDAhR Mac-Dec-POMDP TeamStrategy (C) P (On
t+1|O

n
t0:t, K)

(Wunder et al., 2011) SoA PI-POMDP StrategyLevel (C) P (On
t+1|O

n
t0:t)

(Yin et al., 2016) SoP,RSF SMDM+RBPF AgentDestination (A) P (O1
t+∆t|O

1
t−s:t)

(Fardet al., 2007) SoA DFAlearning+EDPM NextAgentAction (A) P (O1
t+1|O

n
t0:t, K)

(Rovatsos et al., 2003) SoA DFAsviaUS-L∗ +DSSF StrategyClass (A,B,C) P (On
t+1|O

n
t0:t, K)

(Maŕın et al., 2005) SoP,SoMFviaEDAhR DFAsviaUS-L∗ +DSSF AgentPosition (A) P (O1
t+∆t|O

n
t0:t, Et, K)

(Chakraborty et al., 2013) SoA DSSF AgentActions (A) P (O1
t+∆t|O

1
t−L:t, K)

(Ganzfried&Sandholm,2011) SoA DBBR Strategy (C) P (On
t+1|O

n
t0:t)

(Yangetal., 2014) SOAorSOP SSG+MLEusingSUQR PoachingTargets (A,B,C) P (On
t+1|O

n
t0:t)

(Stone et al., 2000) RSF,Opp. ActionSet Sim. ofOpp. Actions Success ofAction (A) P (O1
t+∆t|O

1
t )

(Iglesias et al., 2009) SoAviaEDAhR χ2-test onTrieTraces AnomolousSOA(A,B,C) P (On
t+1|O

n
t0:t, K)

Table 4: Policy Approximation approaches

Work TypeofFeature LearningFramework Abstraction: DefOn PredictionExpression

(Hayes&Beling, 2018) SoA HAC TeamStrategy (C) P (On
t+1|O

n
t0:t)

(Lattner et al., 2005) SoA,SoMF HAC+DSDF AgentAction (A) P (O1
t+1|O

n
t0:t, K)

(Cliff et al., 2013) SoP Shannon Info. Dynamics ActivityCorrelation (B) P (Ok
t+1|O

n
t0:t, C

n
t0:t)

(Cliff et al., 2017) SoP Shannon Info. Dynamics ActivityCorrelation (B) P (Ok
t+1|O

n
t0:t, C

n
t0:t)

(Erdogan&Veloso, 2011) SoPviaEDAhR HAC+Hausdorffmetric PairTrajectories (B) P (On
t+∆t|O

n
t0:t, K)

(Yasui et al., 2013) SoP HAC+DSDF TeamStrategy (C) P (On
t+1|O

n
t0:t, K)

(Adachi et al., 2016) SoAviaEDAhR HAC+DSDF TeamStrategy (C) P (On
t+1|O

n
t0:t, K)

(Trevizan&Veloso, 2010) SoMFviaEDAhR+PCA FrobeniusNorm DefensiveStrategy (C) P (On
t+1|O

n
t0:t, C

n
t0:t, K)

Table 5: Other approaches

complete abstractions, whereas that trend is opposite for policy approximation approaches,
where atomic abstractions are preferred. Generative approaches seem to be split roughly
equally. This may be due to the relatively large state space required to describe an entire
team, which typically poses many more challenges for policy approximation schemes than
for discriminative or generative ones.

We also see two trends related to potential sources of information which are rarely taken
advantage of and which point perhaps to new opportunities for opponent modeling research.
First, very few techniques are explicitly modeling the environment variables. Environment
variables in robot soccer may be variables such as the overall score, the amount of time left
in the game, or whether a robot has received a caution. Environment variables in other
settings might include terrain or visibility constraints, or the status of an objective which
can only be captured or lost over several encounters. These variables clearly affect the
strategy of human soccer agents who, for instance, may intentionally waste time or play
very defensively near the end of a game if they are winning, eliminating chances for their
own team to score, but also drastically reducing the probability of their opponent scoring.
Currently, very few approaches, even under perfect conditions, could predict this behavior.

Similarly, there is a term which is not just rare, but altogether absent from the literature.
We did not encounter any approach which attempted to use transfer learning to bootstrap
opponent modeling across different domains. We hypothesize that transfer learning will
not only be an important component for achieving more performant opponent modeling
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systems, but it may also offer an invaluable tool for examining what exactly systems are
learning. We expect similar games to support similar classes of effective strategies, and we
expect opponent modeling systems to find these strategies. The robustness of all of these
assumptions can be tested in part by experimenting with transfer learning.

We should also add that virtually all approaches use expert domain knowledge in some
form or another. Here, we add the K term explicitly into the probability expressions if the
technique uses distance functions or feature extraction rules which are engineered specifically
for that domain and would not have meaning in other domains.

6. Open Problems and Future Research Directions

Opponent modeling researchers have made significant progress in the last two decades.
However, there are still many opportunities for improvement, including a greater focus on
automatic feature selection and validation, more comparisons between methods facilitated
by frameworks which unify vocabulary and establish metrics, and development of methods
that generalize to different games which share strategic concepts. Given these high-level
aspirations, we identify six key areas and approaches which seem particularly ripe for in-
vestigation in the context of opponent modeling in RoboCup and other similar domains.

6.1 Modeling Failed Actions

Correctly identifying actions is critical to many opponent modeling systems. However, few
methods are capable of modeling failed actions. Failed actions provide arguably as much
information as successful actions, yet to the best of our knowledge there do not exist any
opponent modeling approaches which model failed actions either via explicitly reasoning
about failure, or by calculating distributions over the action which was attempted. Both
identifying what an opponent intended, as well as how to incorporate that information into
a learning algorithm, are open research questions. Identifying failed actions and modeling
opponent capabilities are closely related. Some work exists which models opponent search
depth in a minimax setting (Carmel & Markovitch, 1993, 1996a; Donkers et al., 2001),
but analogs for adversarial domains with partial observability, and continuous or stochastic
actions do not yet exist.

Moreover, data about failed actions and models of opponent capabilities can be mined
to improve estimates of the strategy gradient and the reliability and stochasticity of certain
actions for the given opponent. Much like many basketball and soccer teams are content to
let the opposing team shoot from long range since the probability of scoring is low, we would
like our opponent modeling systems to reason similarly not only about what the opponent
plans to do, but also about their probability of success should they choose a given action.
The problem of skill estimation (Archibald & Nieves-Rivera, 2018) is closely related, and
Bayesian techniques have been proposed for simulated, real-valued games including darts
and billiards (Archibald & Nieves-Rivera, 2019), but this is still an under-explored area of
research and has yet to be integrated in opponent modeling systems at any notable scale.

306



A Survey on Opponent Modeling in Adversarial Domains

6.2 Using Model Inference Techniques from Software Engineering

Although many, many learning algorithms have been applied to opponent modeling, there
is one class of approaches which are notably absent. In software engineering, there is a
subfield of study dedicated to building models of programs given only the stack trace of the
program or the value of variables at given points in program execution. Thus, the model
does not have access to the source, only a (perfect) black-box simulation. This problem
statement has a natural mapping to opponent modeling.

Two dominant techniques have emerged to address this problem. One, proposed origi-
nally in 1972, uses stack traces organized into trees. The trees are compressed via the k-tails
algorithm (Biermann & Feldman, 1972), resulting in a state machine which approximates
the program in question. Modern variants use more complicated merging and compression
algorithms (Heule & Verwer, 2013) and form hierarchical models (Alimadadi et al., 2018).
The second technique mines program invariants, such as an argument to a function always
being positive, from the execution traces in order to build a specification of the program.
The original version, Daikon (Ernst et al., 2007), has a number of variants. See (Krka et al.,
2014) for an overview of invariant-based model inference techniques.

6.3 Relaxing the Static Strategy Assumption

One popular assumption in opponent modeling is that the opposing team follows a fixed
strategy. This assumption is often required in order to make the problem tractable, but
can severely limit the applicability and accuracy of the system. Strategies violating this
assumption are known as non-stationary strategies and may involve scheduled changes be-
tween multiple fixed strategies or continually updating strategies as the agent experiences
and learns from its environment. We hypothesize that some limited form of reasoning about
the opponent’s ability to change strategy or to react to actions taken by the control team
may lead to greater prediction accuracy and greater applicability to systems where mod-
eling a dynamic opponent strategy is necessary, and this has very recently been supported
experimentally (Yu et al., 2021).

Of the directions suggested here, this is the most mature. Already, there has been sub-
stantial work on dealing with non-stationarity in both game theory (Hernandez-Leal et al.,
2017a, 2017b), where the problem is often cast as identifying an agent’s choice between fixed
strategies, and reinforcement learning (Papoudakis et al., 2019; Li et al., 2021), where most
agents are assumed to be continually updating their strategies. However, these approaches
and their possible interactions in a multi-agent setting give rise to further questions. In par-
ticular, new research is needed to understand when and how the theory of mind (Premack
& Woodruff, 1978; Goldman et al., 2012) can and should be applied. Some initial work has
shown that for some games, first and second order theory of mind has substantial benefit,
with higher orders having decreasing return on investment (De Weerd et al., 2013; Tian
et al., 2021b). Recently, new graphical models have been proposed, including the threat-
ened MDP (Gallego et al., 2019) and a Bayes theory of mind on policy (Yang et al., 2019),
which allow reasoning about an adversarial agent’s planning process, and whether it may
itself be reasoning about a theory of mind.

Clearly, this problem quickly becomes intractable. One possible way to mitigate this
problem in general is to combine these models with Monte Carlo methods, which has been
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tried in related domains (Yin et al., 2016; Bard & Bowling, 2007). Monte Carlo methods
have the advantage of being able to leverage a wealth of successful research in sampling
and simulation (Browne et al., 2012; Liu et al., 2018), and we hypothesize that the biggest
challenges will be to parameterize strategies both in terms of their policy as well as the
reliability of stochastic actions such that sampling approaches can adjust parameters online
in order to fully explore multiple hypothetical opponent responses.

6.4 Unsupervised and Semi-Supervised Learning for Feature Selection

Feature selection is often somewhat of a dark art in machine learning. However, we hypothe-
size that many opponent modeling problems contain structure that can be exploited during
the feature selection process. In particular we believe semi-supervised and unsupervised
learning techniques, including manifold learning, are particularly promising because they
allow some generality across applications and because they greatly reduce the effort required
to replicate results. Feature extraction, broadly speaking, is well-studied (Ding et al., 2012;
Storcheus et al., 2015), and continues to be an active area of research. Various classes of
techniques have been proposed, including semi-supervised learning (Zhu, 2005; Sheikhpour
et al., 2017), where only a subset of data instances are labeled. In particular, in light of the
argument made for the utility of the strategy manifold and similar concepts, research on
manifold learning (Izenman, 2012; Huo et al., 2007) offers a promising path forward, and
indeed has already become a mainstay in other fields (Pless & Souvenir, 2009).

The raw data from RoboCup and similar games resides in an enormous state space.
However, when two teams play against each other, the states actually visited represent a
small fraction of this space. According to the idea of the strategy manifold this is due to
the interaction between agent capabilities and the rules of the contest, which give the state
space an underlying structure and cause teams to converge toward some subset of states.
It is not a coincidence, for instance, that professional soccer teams most often play with
3-4 defenders, 4-5 midfielders, and 1-2 attackers, even though all possible assignments of
roles to the 10 outfield players are allowed by the rules. We hypothesize that understanding
this structure is a prerequisite to optimal feature selection, and we advocate for greater
application of both traditional unsupervised dimensionality reduction techniques, as well as
semi-supervised approaches.

In fact, evidence of this underlying structure already exists within opponent model-
ing research, albeit indirectly. Research by Gold (2010), on developing a goal detection
system for a video game using an input-output hidden Markov model (IOHMM) (Bengio
& Frasconi, 1995), uncovered an interesting phenomenon. By directing players to achieve
particular goals and recording their sequence of actions, both a general model as well as a
personalized model could be constructed. These personalized models effectively predicted
behavior of experienced players. However, the personalized models actually decreased over-
all performance for novice players. We hypothesize that this is because novice players
exhibit something closer to a random walk through the game state space, and thus the
underlying strategy manifold they access is not described well by the general model. Fur-
thermore, the discovery of strategy ‘levels’ by Wunder et al. (2011) in the Lemonade Stand
Game supports the idea that some regions of game-state space may only be visited during
interactions between particular, perhaps unique, strategies.
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6.5 Estimating Trajectories via Strategy Gradients

Techniques to use domain knowledge in a principled way to define abstractions are still
an active area of research. In terms of system effectiveness, perhaps the most important
decision in modeling an opponent is: “At which level of granularity should predictions be
made?” This is equivalent to “What is the definition of O1:n

t ?” Although many solutions will
likely be hierarchical combinations of methods, this question is still relevant for each layer
independently. Central to answering this question is an understanding of the dynamics of
the system at a given level. Currently, the vast majority of opponent modeling approaches
are myopic, seeking only to predict the very next opponent state, O1:n

t+1. In instances where
∆t > 1, search spaces often become very large and the opponent modeling system must
resort to sampling. The strategy gradient offers a way to bias samples and drastically reduce
the number Monte Carlo rollouts which explore regions of the state space that are unlikely to
be realized, similar to pruning techniques conditioned on the estimated strategies of more
traditional adversarial search algorithms (Sturtevant & Bowling, 2006; Sturtevant et al.,
2006). It may also be possible to perform some form of real-valued landmark identification
if an opponent’s trajectory through game state space must always pass through the same
extrema with respect to some variable.

Estimating gradients requires the underlying value functions, or at the very least, re-
ward functions. Recent advances in inverse reinforcement learning (IRL) (Zhifei & Joo,
2012; Arora & Doshi, 2021) could provide a foundation for techniques seeking to estimate
these quantities as a prelude to estimating strategy gradient. Several multi-agent IRL vari-
ants been developed, and methods have been tested in both cooperative (Hadfield-Menell
et al., 2016; Gaurav & Ziebart, 2019) and adversarial (Tucker et al., 2018; Lin et al., 2017)
domains. However, there is substantial work remaining before these techniques are appli-
cable to all the domains in this survey.

The concepts of strategy manifolds and strategy gradients are by no means presented
in completion here. Further research will be required to develop these ideas to their full
potential, and we believe they offer a promising framework to conceptualize and formalize
these problems. Importantly, we also hypothesize that these concepts can be used to learn
the rules of a game or the capabilities of different agents given strategies for all agents. Just
as young children can both form models of the rules by observing play (Rakoczy et al.,
2008), as well as develop strategies given the rules, so too should our agents. A failure to
achieve this capability is likely evidence of an incomplete model, or a model that lacks the
potential for a general understanding of the situation. Some recent work presents excellent
examples of well-designed experiments which verify the efficacy of proposed methods by
producing or predicting the type of emergent behavior we might expect from a strategic
agent (Tang et al., 2021; Wang et al., 2021).

6.6 Transfer Learning Between Different Rule Sets

Knowledge about strategic principles is almost always transferable between different in-
stances of the same game featuring different opponents. Furthermore, some concepts are
also transferable between different, related games. For instance, defensive schemes in hockey,
soccer, and basketball share a number of similarities such that humans who learn some ba-
sic strategic principles in the context of one game can often apply them successfully to the
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other games without explicit instruction. Transfer learning (Pan & Yang, 2010; Weiss et al.,
2016) allows algorithms to apply knowledge learned in one setting to other, novel settings,
and is already an active area of research in multi-agent systems (Da Silva & Costa, 2019)
and within adversarial, partially observable games (Shao et al., 2018). However, current
opponent modeling research can handle facing a new opponent, but we do not have existing
techniques for engaging in a game with different but related rules.

Successful applications of transfer learning to opponent modeling will reduce the time
needed to model opponents accurately during engagements, since some portion of the strat-
egy of the game can be transferred before the game begins. There are few examples of
this in the opponent modeling literature, but there are some, including Hawasly and Ra-
mamoorthy (2013) who are able to learn sub-policies that are transferable between games
in simulated robot soccer. An attractive augmentation to transfer learning is the concept
of policy distillation (Rusu et al., 2015), where a policy is represented in a compressed, ab-
stracted form, allowing it to be matched or applied to families of cases. Similarly, research
by Wu et al. (2021) learns a base policy and then adapts online to new opponents. The
key to their approach is generating a population of opponents with different strategies to
train against. It is not hard to imagine policies representing behavior such as “always stay
between the opponent and the goal while defending” or “avoid co-locating with teammates
while on offense”, which we know to be features of high level play, distilled and transferred
between contests or even between similar games.

7. Discussion and Conclusion

This survey provides several contributions. We review a large number of existing works and
provide a means to easily compare them. We also introduce the concepts and formalism
for strategy manifolds and strategy gradients. Last, we discuss future research directions
and opportunities for opponent modeling. Here, we would also like to provide some gen-
eral takeaways for researchers and practitioners interested in doing research on opponent
modeling or using opponent modeling systems.

When to Employ Opponent Modeling Opponent modeling is most effective when the
system meets some or all of the criteria set out in the definition we use in section 2. It must
be possible to observe the adversary, and these observations must provide information about
the adversary that can be used to exploit their strategy. This observability constraint may be
a limiting factor if the inference or learning framework is not sample efficient. For situations
where the optimal strategy is known, opponent modeling may be useful if the opponent
deviates from an equilibrium strategy and affords the opportunity to exploit a strategic
weakness. When the optimal strategy is not known or not unique, it is far more likely
that the adversary being modeled is suboptimal, and it is therefore possible to exploit their
strategy in some way. If the adversary is optimal, then their strategy cannot be exploited
even if it is known. Lastly, opponent modeling techniques often offer the biggest advantage
over game-theoretic techniques when the state space is partially observable. That is, when
there are variables that impact the future states of the game, but whose values are not known
by all agents. Opponent modeling techniques could also be adapted for use in cooperative
domains simply to model the goals or policy of an external agent, where the resultant
model could then be used to reduce the likelihood of bad outcomes instead of increase the
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likelihood of exploitation. In terms of which general class of learning algorithm to employ,
there is one tradeoff that is particularly important. This is the added complexity of defining
Z and h() when using discriminative or generative models versus the data inefficiency of
policy approximation. We should also note that even approaches which learn a policy for
an adversarial domain directly, without explicitly performing opponent modeling, are still
constructing an opponent model which is latent within the resultant policy.

Communicating Opponent Modeling Hypotheses Clearly there are many domains
where opponent modeling research has already been conducted and it seems the utility of
hypotheses regarding novel domains at this point is low. Similarly, many algorithms have
been applied to learn opponent models, and while algorithmic improvements are certainly
still possible, many of the challenges identified here are not solvable simply by using a new
learning or inference method. One of the goals of this survey is to offer concepts and vo-
cabulary which facilitate more fruitful hypotheses. Here, we reiterate several tools we hope
researchers will add to their toolbox. First, hierarchical composition of opponent modeling
methods seems to be very promising for games like robot soccer where agents may perform
actions individually or in a cooperative manner with some or all of their team. Although we
highlight several hierarchical systems in this paper, the vast majority of proposed techniques
do not take advantage of the natural hierarchy formed by atomic, branch, and complete
abstractions. Second, as can be seen by adopting the general expression proposed in sec-
tion 5, although there are many potential sets of information opponent modeling systems
may use, most approaches use only a fraction of the potential information available. In
fact, for many systems the expressions are identical. This leads us to believe there is sub-
stantial room for innovation in developing systems that can leverage additional sources of
data. Last, we have noticed that many papers do not present ablation tests with respect
to internal representations of opponents or game states. We propose using the concepts of
strategy manifold and strategy gradient to assist in feature validation as well as to promote
hypotheses regarding the dynamics of game states.

Recommendations for Improving Experimentation There are two prominent weak-
nesses in the existing opponent modeling literature with respect to experimental design and
validation of proposed methods. Most importantly, the majority of research does not ac-
tually test hypotheses related to assumption (5) from section 2, that opponent modeling
systems uncover exploitable information about opponent strategies. Instead, the accuracy
for an intermediate classification component is often reported. While this is useful in de-
veloping better intermediate classification algorithms, it does not by itself inevitably lead
to better opponent modeling systems. Ideally, experiments should show that systems with
higher accuracy in predicting, say, whether a given robot is an attacker or defender, also
have a higher expected score differential. This is not simply a missing data point for which
we may make a reasonable guess. This practice obfuscates the challenging problem of taking
a class label and deriving a prediction. It also avoids altogether defining and implementing
h() or justifying Z, which severely limits the conclusions which can be drawn. The second
weakness is the lack of validation of different feature sets and feature extraction techniques.
Most papers present only a single method, do not discuss its genesis, and do not attempt
to validate the importance or necessity of any of the features.
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We also think experiments which incorporate multiple domains and show the opponent
modeling system learning fundamental strategic concepts across similar domains will be
especially compelling. We should expect opponent modeling systems to predict the same
types of emergent strategic behavior and co-evolution of strategies that we observe whenever
the rules of a sport are changed, when a competitive video game receives a major patch,
or when a new military technology becomes widely available. The only way to benchmark
progress towards such goals is to run these experiments.
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