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Abstract— Markov decision processes (MDPs) are a common
general-purpose model used in robotics for representing se-
quential decision-making problems. Given the complexity of
robotics applications, a popular approach for approximately
solving MDPs relies on state aggregation to reduce the size of
the state space but at the expense of policy fidelity—offering
a trade-off between policy quality and computation time.
Naturally, this poses a challenging metareasoning problem:
how can an autonomous system dynamically select different
state abstractions that optimize this trade-off as it operates
online? In this paper, we formalize this metareasoning problem
with a notion of time-dependent utility and solve it using deep
reinforcement learning. To do this, we develop several general,
cheap heuristics that summarize the reward structure and
transition topology of the MDP at hand to serve as effective
features. Empirically, we demonstrate that our metareasoning
approach outperforms several baseline approaches and a strong
heuristic approach on a standard benchmark domain.

I. INTRODUCTION

MDPs are a common general-purpose model used in
robotics for representing sequential decision-making prob-
lems [23]. However, the complexity of solving MDPs scales
poorly with the number of features reasoned about in the
environment, limiting their applicability. To address this
limitation, a range of approximate solvers for MDPs have
been proposed that seek to trade a small reduction in policy
quality for a large reduction in computation time.

A particularly effective approximate solver for MDPs,
recently proposed by Nashed et al. [17], solves a sequence
of partially abstract MDPs in order to solve an MDP. In
a partially abstract MDP, some states are considered at
maximum fidelity while other states are considered at lower
fidelity using an abstract representation. This can greatly
reduce the size of the state space while still resulting in a near
optimal policy by using a detailed representation for states
where it is most necessary. Still, for a partially abstract MDP
to be effective, it requires a suitable abstraction function that
maps a state in an MDP to an abstract state in an abstract
MDP. Since there has been substantial work on generating
abstraction functions for planners, ranging from symbolic
planners [6], [27], [13] to stochastic planners [1], [7], [26],
this paper assumes that a suitable abstraction function already
exists via either learning or careful expert design.

Given a specific abstraction function, a partially abstract
MDP uses an expansion strategy to determine which states
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Fig. 1. Two partially abstract MDPs that were constructed using different
expansion strategies: a cheap expansion strategy that often results in lower
policy quality (fop) and an expensive expansion strategy that often results in
higher policy quality (bottom). Small circles are ground states, large circles
are abstract states, and arrows are transitions between states. The red ground
state is the current state, the green ground states have high reward, and the
green abstract states contain a ground state that has high reward.

of the MDP to reason about at maximum fidelity and
which states of the MDP to reason about at lower fidelity.
Concretely, this means that the expansion strategy selects
the abstract states to expand in the partially abstract MDP.
Ideally, any approach to selecting an expansion strategy
(illustrated in Fig. 1) should optimize a formal notion of
time-dependent utility by managing the trade-off between
policy quality and computation time given the domain of
operation and the available computational resources. Most
importantly, such an approach should generalize to any MDP
and require little knowledge in the details of that MDP.

In this paper, we therefore (1) offer a metareasoning
approach to selecting different expansion strategies that
optimizes a formal notion of time-dependent utility and (2)
express it as deep reinforcement learning problem. Moreover,
we (3) propose several general, cheap heuristics that summa-
rize the reward structure and transition topology of the MDP
at hand to generate effective features for deep reinforcement
learning. Empirically, we demonstrate that our metareasoning
approach outperforms several baseline approaches and a
strong heuristic approach on a standard benchmark domain.



II. RELATED WORK

There are many approaches to approximately solving
MDPs, including performing dynamic programming, using
partial policies, and employing state abstractions. See [17]
for a thorough discussion of how these approaches relate
to partially abstract MDPs. Similarly, reinforcement learning
with time-dependent utility, introduced by Horvitz [10], has
been used in a variety of metareasoning problems [24], [22],
[4]. Although our approach uses reinforcement learning and
time-dependent utility similar to this work, we focus on a
different problem—that of learning how to select different
expansion strategies dynamically online during operation.

Online planning and learning over different abstractions
in general is a common problem across many areas of
artificial intelligence and encompasses several related sub-
problems. These include handling the non-Markovian nature
of state and action abstractions [2], learning context-specific
independences present in certain tasks [5], and learning
temporal abstractions in the form of progressively more
abstract skill controllers [14]. However, here, we restrict our
attention to state abstractions in the form of state aggregation
where multiple states in a larger (ground) problem form a
single state in a smaller (abstract) problem.

Online selection of state abstractions has been studied in
the context of both reinforcement learning and planning.
In reinforcement learning, abstractions are generally used if
the state space is large and training data is sparse, which
leads to poor experiential coverage. Methods include learning
the best state abstraction from a set of state abstractions
via hypothesis testing [12] and dynamically selecting state
abstractions of increasing granularities based on confidence
intervals of Q-values [25]. In planning, similar techniques
have been to applied to sample-based tree search algorithms.
For example, the PARSS algorithm is an algorithm that
adjusts state abstractions during tree search by starting with
coarse state abstractions and refining them given the variance
of the Q-values over actions at a specific abstract state [11].

An extensive body of research has investigated reasoning
over state abstractions during planning. Early work proposed
a hierarchy of state abstractions, represented as factored
semi-MDPs, that may have multiple intermediate state ab-
stractions that can be swapped in and out depending on
the environment [21]. Later work proposed algorithms for
dynamically eliminating state factors in states that were
estimated to not impact the policy by comparing two partially
abstract policies made with different state abstractions [3].
Finally, there have been specific applications, such as multi-
agent planning, where specialized partition schemes have
been introduced and adapted to an online setting [16].

This paper proposes a metareasoning framework that takes
advantage of powerful deep reinforcement learning methods
to learn a policy for selecting different expansion strategies.
Following work on SSPs, we use general, cheap heuristic
features that avoid relying on the specifics of an MDP. Most
importantly, we define this as a metareasoning problem that
optimizes a formal notion of time-dependent utility.

III. BACKGROUND

In this section, we review the formal definitions of a
ground MDP, an abstract MDP, and a partially abstract MDP.

a) Ground MDPs: A ground MDP is a tuple M =
(S, A, T, R). The space of states is S. The space of actions
is A. The transition function T : S x A x S — [0,1]
represents the probability of reaching a state s’ € S after
performing an action a € A in a state s € S. The reward
function R : S x A — R represents the immediate reward
of performing an action ¢ € A in a state s € S. A
solution is a policy 7 : S — A indicating that an action
m(s) € A should be performed in a state s € S. A policy
7 induces a value function V™ : S — R representing
the expected discounted cumulative reward V™ (s) € R for
each state s € S given a discount factor 0 < ~ < 1.
An optimal policy 7* maximizes the expected discounted
cumulative reward for each state s € S given the equation
V*(s) = maxeea [R(s,a) + 7Y ycg T(s,a,8)V*(s)].

b) Abstract MDPs: Specifying an abstract MDP M of
a ground MDP M requires two functions [15]. First, an
abstraction function ¢ : S — S maps a ground state s € S
to an abstract state § € S. Second, an inverse abstraction
function ¢~! : S — P(S) maps an abstract state 5 € S to
a set of ground states S C P(.S), where P(S) is the power
set of S. The condition ¢(s) = 5 < s € ¢~ !(5) must hold
for each ground state s € S and abstract state 5 € S.

An abstract MDP is a tuple M = (S, A, T,R) [15].
The space of abstract states is S = {¢(s) | s €
S} such that a set of ground states S is abstracted by
an abstraction function ¢. The space of ground actions
is A. The abstract transition function is 7T'(5,a,5) =
Y seo-1(s) Y(8) Xgep-1(s) T(s,a, ). The abstract reward
function is R(5,a) = > c4-1(5 ¥(s)R(s,a). Note that a
weighting function ¢ : S — [0, 1f represents the probability
of being in a ground state s € S in an abstract state ¢(s) € S.

c) Partially Abstract MDPs: A partially abstract MDP
M combines a ground MDP M and an abstract MDP A
as a tuple M = (S,A,T,R) [17]. The space of partially
abstract states is S = « U (3 with a set of ground states
a = {¢1(5) | 5 € T'} and a set of abstract states 3 = {S\I'}
such that a set of expanded abstract states I' C S is expanded
by an inverse abstraction function ¢~!. The space of ground
actions is A. The partially abstract transition function 7" :
S x Ax S — [0,1] is composed of the ground/abstract
transition functions 7" and 7T*:
T(3,a,§)
T(g’ a, §/) _ ZS/E¢_1(§/) T(57a7 S/) )
2564)*1(5) w(S)T(S, a, S/)

7(s,a,5)

if s€a,§ e
if s5ea,sep
if 5€ 8,5 €«
if 5€8,5§ep
The partially abstract reward function R:SxA >R is
composed of the ground/abstract reward functions R and R:

R(3,a) = {]:2(5’ @)

if sea

R(S,a) if S€PB



IV. SELECTING PARTIAL STATE ABSTRACTIONS

The problem of selecting an expansion strategy to de-
termine the abstract states to expand in a partially abstract
MDP involves managing the trade-off between policy quality
and computation time. We frame this as a metareasoning
problem, the main advantage being that it expresses this
trade-off in terms of time-dependent utility, providing deep
reinforcement learning with an appropriate objective. Meth-
ods for similar metareasoning problems typically use heuris-
tics based on statistical measures to manage this trade-off.
Here, we introduce the first approach that selects expansion
strategies for partially abstract MDPs decision-theoretically.

A. Metareasoning for Partial State Abstractions

We begin by introducing the metareasoning problem for
partial state abstractions. This problem requires a time-
dependent utility that represents the utility of a policy in
terms of its quality and computation time. Intuitively, a policy
of a specific quality computed in a second has higher utility
than a policy of the same quality computed in an hour. A
time-dependent utility is therefore expressed as the difference
between an intrinsic value that reflects the utility of a policy
given its quality (but not computation time) and a time cost
that reflects the utility of a policy given its computation time
(but not quality) [10]. We define this function below.

Definition 1. Given a policy of quality q € ® and compu-
tation time t € U, a time-dependent utility U : ® x ¥ — R
can be expressed as the difference between two functions
Ulq,t) = Ur(q)—Uc(t) where Uy : ® — R is the intrinsic
value and Ugx - ¥ — RY is the time cost.

Given this time-dependent utility, the one-step metareason-
ing problem for partial state abstractions is the problem of
selecting the abstract states to expand in a given partially
abstract MDP. Naturally, a solution to this problem must
optimize time-dependent utility: we must select the abstract
states to expand in the partially abstract MDP that balances
the quality and computation time of its resulting policy.
Formally, given a set of abstract states I'; € P(.S) to expand
in a partially abstract MDP M; and its resulting policy m; of
policy quality ¢(m;) and computation time t(7;), this one-
step metareasoning problem is as follows.

arg max U (q(m

i), (7))
T, eP(S)

This can be challenging to solve given substantial uncertainty
over the policy m; resulting from a partially abstract MDP
M; that expands the abstract states T'; € P(S).

In real-time settings, an autonomous system often lazily
plans and acts online. Hence, during operation, we assume
that the autonomous system is either (1) executing an old
local policy 7 when it encounters a visifed current state s or
(2) solving for a new local policy ' when it encounters an
unvisited current state s’. We can therefore view the union
of each local policy m; as a joint global policy 7y as in
our recent work [17] that grows in quality and computation
time with each local policy ;. Intuitively, this presents a

sequential metareasoning problem for selecting the abstract
states to expand in a sequence of partially abstract MDPs
where the resulting local policies 7; of each partially abstract
MDP M; together compose a joint global policy 7y that
must optimize time-dependent utility. Formally, given the
abstract states T = [['1,...,T's] expanded in a sequence
of partially abstract MDPs [M, ..., M| over the unvisited
states {s1,...5,} € S” and the joint global policy 7y of
quality ¢(7y) and computation time ¢(7y), this sequential
metareasoning problem is as follows.

), t(mr))

In practice, it is often beneficial to approximate this
sequential metareasoning problem as a sequence of inde-
pendent one-step metareasoning problems as follows.

)a t(ﬂ-l)) + - targ max U(Q(ﬂ-h)7 t(ﬂ-h))
I'peP(S)

arg max U (q(my
T

arg max U (q(my
Iy E'P(S)

B. Reinforcement Learning for Partial State Abstractions

We now cast the sequential metareasoning problem for
partial state abstractions as an MDP. Each time an unvisited
state s; € S is encountered, the MDP must select the
abstract states I'; to expand in the partially abstract MDP M.
Intuitively, the states include the quality and computation
time of the current joint global policy along with the reward
structure and transition topology of the ground MDP and
abstract MDP while the actions include expansion strategies
that select the abstract states to expand in the partially
abstract MDP. We define this metareasoning problem below.

Definition 2. The sequential metareasoning problem Jfor
partial state abstractions is a tuple (&, U, F,5 A T, R)
given a ground MDP M and an abstract MDP M :

e & ={qo,q1,-.-,9Nn,} is a set of qualities.

o U ={to,t1,...,tNg } is a set of computation times.

o« F = Fyx Fy X -+ x Fy, is a set of features that
summarize the reward structure and transition topology
of the ground MDP M and abstract MDP M.

¢« S=®xUXFisa set of states of computation: each
state s € S reflects the current joint global policy my
of quality q(my) € ® and computation time t(mwy) € .

e Aisaset of actions of computation: the set of expansion
strategies that each select different abstract states 1'; to
expand in a partially abstract MDP M;.

o T:S8xAxS — [0,1] is an unknown transition functlon
that represents the probability of reaching state s =
(¢, t,f)esS after performing action a € A in state
s = (q7t f)es.

e« R:SxAxS —Risareward function that represents
the expected immediate reward, R(s,a,s") = U(q ,t')—
Ulq,t), of reaching state s' = (¢',t',f') € S after

performing action a € A in state s = (¢,t, f) € S.

Note that the reward function is consistent with the
objective of optimizing the time-dependent utility: execut-
ing a sequence of expansion strategies until a joint global
policy 7y of quality g(my) € @ and computation time



t(my) € ¥ emits a cumulative reward equal to the time-
dependent utility U (q(7y ), t(7y)). This is a form of reward
shaping—equivalent to emitting a reward of U(q,t) once at
the end of an episode in terms of the objective—that guides
reinforcement learning with a reward at each time step [18].

We use deep reinforcement learning to learn an optimal
metareasoning policy by performing a series of simulations
that each use an expansion strategy to select the abstract
states to expand in a sequence of partially abstract MDPs.
Here, an agent learns a policy as a neural network by
performing actions and observing rewards in the environ-
ment, making it a good fit for metareasoning for three rea-
sons. First, by balancing exploitation and exploration, it can
learn how to select an expansion strategy given the reward
structure and transition topology of the ground MDP and
abstract MDP. Next, by ignoring large unreachable regions
of the state space, it can reduce the overhead of learning
which expansion strategy to select. Finally, by using a neural
network that extracts the relationship between large input
and output spaces, it can encode the effects of an expansion
strategy on the resulting policy of a partially abstract MDP
in a way that generalizes to novel states of computation.

C. Calculating Time-Dependent Utility

Typically, in metareasoning, a solution quality ¢ is defined
as the approximation ratio, ¢ = %, where c* is the cost of
the optimal solution and c is the cost of the given solution.
However, since computing the cost of an optimal solution to
a complex problem is often infeasible, a solution quality can
be estimated as the approximation ratio, ¢ = %, where ¢* is
a lower bound on the cost of the optimal solution and c is
the cost of the given solution. Generally, a solution quality
¢ = 0 means no solution was computed while a solution
quality ¢ = 1 means an optimal solution was computed.

We need a specific definition of solution quality in the
context of MDPs. Here, the quality ¢(7) of a policy 7 is
defined as the approximation ratio,

gm) = L — Lses dOVT(s)

Ve Y esd(s)Vr(s)’
where V™ is the value function of the policy  and V'* is the
value function of the optimal policy 7*, given a probability
d(s) of starting in a state s € S. However, since computing
the value of an optimal policy of a complex MDP is often
infeasible, the optimal value function V* must be replaced
with an upper bound on the value function V*.

Given the quality g(7y) and computation time ¢(7y) of
the current joint global policy 7y, we can define the time-
dependent utility U(q(7~),t(7y)) using an intrinsic value
Ur(g(my)) and a time cost U (¢(7y)). First, given a tunable
parameter «, we model the intrinsic value as Ur(q(my)) =
aq(my). Second, given a tunable parameter 3, we model the
time cost as Uc(t(mr)) = ;5 [€¥(™) — 1] such that m; is
the local policy solved for the unvisited states {s1,...s,} €
S". The rates « and 3 are typically given in the problem
depending on the value and urgency for a policy [8].

Given this time-dependent utility, it is possible to ex-
press the reward function of the metareasoning problem.

Formally, given the current state of computation s =
(q(mv), t(my),-) € S and the successor state of computation
s' = (q(m%), t(mh), ) € S that reflect the current joint global
policy 7y and successor joint global policy 7). along with
an expansion strategy a € A used to solve for a new local
policy 7 that improves the joint global policy 7y, we can
express the reward function in the following way.

R(s,a,s') = U(q(ny), t(m%)) — Ulq(mr), t(rr))
= afq(rh) — q(ny)] — 71
V. REPRESENTING THE STATE OF COMPUTATION

In this section, we introduce 6 features that compose the
state of computation in the sequential metareasoning problem
for partial state abstractions. These features can easily be
computed for a ground MDP M and abstract MDP M and
reflect their reward structure or transition topology.

A. Reward Structure

We define 3 features below describing the availability of
immediate reward around the current ground/abstract state.

1) Reward Frequency: The feature f; is the number of
positive reward ground states reachable within h actions of
the current ground state normalized by the total number of
reachable ground states.

2) Reward Proximity: The feature f> is the minimum
number of actions required to reach the nearest positive
reward ground state from the current ground state normalized
by the diameter diam(M) of the ground MDP M.

3) Reward Information: A main weakness of state ab-
stractions is that they induce artificial information boundaries
within the state space. For example, when a set of ground
states is compressed into an abstract state, the abstract MDP
loses information about any ground state that has successor
ground states in other abstract states. This is because succes-
sor ground states may be aggregated with other ground states
that are not reachable in a single action, which is detrimental
when a ground state with high reward successor ground states
can no longer be distinguished from a ground state without
high reward successor ground states. Therefore, the feature
f3 is 1/(1 + |diam(8) — J]|), where diam(8) is the diameter
of the graph of the ground states in the current abstract state
5 € S and § is the distance to the nearest high reward ground
state such that this value approaches 1 or 0 as these ground
states move toward or away from this boundary.

B. Transition Topology

We define 3 features below describing the local transition
topology surrounding the current ground/abstract state.

1) Transition Entropy: The feature f, is the entropy of
the abstract successor state distribution at the current abstract
state assuming that actions are selected randomly. This is a
rough measure of the probability that actions performed at
the current abstract state will transition to different abstract
states that may be worth reasoning over more closely. A
higher entropy at the current abstract state indicates a higher
probability of transitioning to different abstract states.
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Fig. 2. An example of (k, h)-reachability where kK = 3 and h < 4. The
green region is all states reachable from a given ground state s within k
actions. The yellow/red regions are the states from which the set of important
ground states S¢ is still reachable/unreachable within A actions.

2) State Visitation: The feature f5 is the expected dis-
counted number of times that the current abstract state will be
visited given an abstract start state distribution and an optimal
abstract policy. We compute this for all abstract states 3 € S
by performing dynamic programming with the equation

M) =d(s) +7 ) T(5,7(5),5)A5),
ses
where 7*(5) is the optimal abstract policy and d(') is the
abstract start state distribution.
3) Important Ground State Reachability: The feature fg
is a novel measure of reachability from a given ground state
to a set of nearby important ground states.

Definition 3. A set of important ground states Sg is (k,h)-
reachable from a given ground state s if, after performing
any arbitrary sequence of actions a1, . . . , ay, there is at least
one important ground state sq € S that is still reachable
within h actions given a probability € > 0.

Similar to recent work on SSPs [20], [19], this measure
establishes an envelope (illustrated in Fig. 2) of ground states
in which the probability of reaching a set of important ground
states S from a given ground state s is always greater than
zero. In general, while certain MDPs may have transition
topologies that permit calculating (k, h)-reachability exactly,
it usually must be estimated. To do this, we provide a
constant time estimation procedure in Algorithm 1. Here,
the accuracy of the estimate improves with the number of
samples parameterized by n and m. We choose k£ to be
proportional to the diameter of the current abstract state as
this is the maximum number of actions that can performed
by the local policy solved for the current abstract state.

VI. EXPERIMENTS

We now evaluate the proposed approach (DQN) against a
set of baseline approaches on a standard benchmark domain.
a) Hypothesis: Any approach to the metareasoning
problem for partial state abstractions should try to optimize
time-dependent utility by selecting the abstract states to
expand in a sequence of partially abstract MDPs. Ideally,
the approach should identify two cases. First, there are
cases in which cheap and expensive expansion strategies

Algorithm 1: ESTIMATE (k, h)-REACHABILITY

1: Input: An MDP M, a ground state s, a set of important ground
states S, and the parameters k, h, n, and m

2: Output: The probability that the set of important ground states S
are (k, h)-reachable from the ground state s

3: Sk 0

4: fori € {1,...,n} do

5. s+

6: forje{l,...,k} do

7

8

s’ +— SIMULATERANDOMACTION(M, s’)
Sk < Sk U {s’}

9: 0+ 0,p0
10: for s € Sy do
11:  forie {1,...,m} do

12: s’ <+ sp

13: for j € {1,...,h} do

14: s’ <~ SIMULATERANDOMACTION(M, s’)
15: if s/ € Sg or 3p € p such that s’ € p then
16: c—o+1

17: p < pUPATH(sy, s')

18: break

19: return o/n

result in roughly equal policy quality, reducing computation
time at negligible sacrifice to policy quality. Second, there
are cases in which expensive expansion strategies result in
much higher policy quality than a cheap expansion strategy,
boosting policy quality at marginal amortized computation
time. Our hypothesis is that the proposed approach will
learn to exploit these two cases and hence optimize time-
dependent utility beyond the baseline approaches.

b) Experimental Setup: All approaches were evaluated
on 100 random simulations. For each simulation, we record
three metrics: the values for the policy quality, computation
time, and time-dependent utility of the final policy. The
proposed approach was trained on 1000 random simulations
using deep Q-learning with standard settings. The neural
network has two hidden layers of 64 and 32 nodes with ReLU
activation and a linear output layer of 3 nodes. The step
size is 0.0001. The exploration strategy is e-greedy action
selection with an exploration probability e that is annealed
from 1 to 0.1 over 1000 episodes. The experience buffer
capacity is co. The number of steps is 20000. The buffer ini-
tialization period is 200. The target network update interval
is 1000. The minibatch size is 64. All simulations for training
and evaluation were generated using different randomization
seeds to measure generalizability to unfamiliar simulations.

c) Standard Benchmark Domain: We consider the
Earth observation domain proposed in early work on ground
MDPs [9] and recently modified in recent work on partially
abstract MDPs [17]. In this domain, a satellite orbiting Earth
indefinitely must take photos of points of interest P with
weather levels W that change stochastically. The satellite
starts at longitude = € X with its camera focused at latitude
y € Y. Given the rates Ay and Ay, the satellite can
then either do NOOPERATION, shift its camera NORTH to
latitude (y + Ay) € Y, shift its camera SOUTH to latitude
(y — Ay) €Y, or take an IMAGE of a point of interest at
latitude y € Y and longitude z € X. Concurrent to each
action, the satellite orbits from east to west described by
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Fig. 3. Left: The policy quality of the final policy relative to the optimal policy over all evaluation simulations for each approach. Center: The frequency
of computation times of the final policy over all evaluation simulations for each approach. Right: The distribution of time-dependent utilities of the final
policy over all evaluation simulations for each approach. Putting these figures together, we observe that the proposed approach optimizes time-dependent
utility more effectively than the baseline approaches by learning how to manage the trade-off between policy quality and computation time.

67% 0% 0%

25%

33% 25%

0%

100%

Fig. 4. An example policy for the proposed approach that selects expansion
strategies. There are eight abstract states that each contain 2 x4 ground states
where hatch marks denote a point of interest. Each band within an abstract
state represents a specific expansion strategy: blue for NAIVE, orange for
GREEDY, and green for PROACTIVE such that darker shading denotes
higher probability. This policy shows how the proposed approach exploits
reward structure and transition topology of the earth observation MDP to
dynamically select the expansion strategy optimizing time-dependent utility.

longitude ((x + Ax) mod |X]|) € X where the modulo
operator creates periodic boundary conditions to represent
continuous orbits around earth. Most importantly, given the
IMAGE action, the satellite earns a reward proportional to
image quality such that image quality is a function of the
weather w € W. The formal definitions of the ground,
abstract, and partially abstract MDPs are in recent work [17].

d) Baseline Approaches: We consider pure and hybrid
approaches that expand the current abstract state and a set of
informative abstract states. The NAIVE approach expands no
informative abstract states. The GREEDY approach expands
informative abstract states that contain a point of interest
within 1 abstract state of the current abstract state. The
PROACTIVE approach expands informative abstract states
that are reachable from the current abstract state to any
abstract state that contains a point of interest within 2 abstract
states of the current abstract state. The HYBRID approach
uses either the NAIVE, GREEDY, or PROACTIVE approach
depending on the (k, h)-reachability of the current ground
state and the occupancy frequencies of the abstract MDP.

e) Experimental Results: Fig. 3 shows that the pro-
posed approach optimizes time-dependent utility beyond the
baseline approaches. First, NAIVE, GREEDY, and PROAC-
TIVE exhibit poor time-dependent utility (29.6, 36.6, 32.2).
This is because they lead to either high policy quality in too
much computation time or low policy quality. Next, HYBRID
exhibits better time-dependent utility (40.7) by heuristically
reasoning over expansion strategies via careful expert design.
Finally, DQN exhibits the best time-dependent utility (44.7)
by performing explicit optimization using deep reinforce-
ment learning. Overall, the proposed approach decision-
theoretically selects expansion strategies (like in Fig. 4)
based on whether investing computation time would result
in a worthwhile improvement in policy quality.

VII. CONCLUSION

This paper introduces the metareasoning problem of se-
lecting different expansion strategies and solves it using deep
reinforcement learning with several general, cheap heuristics
that reflect the MDP at hand. Empirically, we show that
our metareasoning approach outperforms several baseline
approaches and a strong heuristic approach on a standard
benchmark domain. In future work, we will explore the
generalizability of this work to MDPs of varied topologies.
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