
Robust Rank Deficient SLAM

Samer B. Nashed1,2, Jong Jin Park2, Roger Webster2, and Joseph W. Durham3

Abstract— Autonomous mobile robots need maps for effec-
tive, safe navigation, and SLAM in general is still an unsolved
problem. Nonetheless, certain combinations of environmental
characteristics and sensors admit tractable solutions. In par-
ticular, detection and tracking of linear features such as line
segments (2D) or planar facets (3D) has been proven robust in
many man-made environments. However, these types of features
produce rank-deficient constraints, which create challenges
for graph-based SLAM optimizers. We present techniques for
using rank-deficient features and constraints more robustly by
analyzing the approximate null-space of the constraints for
each node in the factor graph representing the trajectory. We
also extend auxiliary methods for correspondence calculations
and map update routines, the combination of which yields
state-of-the-art performance for a rank-deficient SLAM system.
We present results from quantitative experiments comparing
memory use, compute load, accuracy, and robustness for several
ablation tests on real and simulated data.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a pre-
requisite for deploying autonomous mobile robots, and the
performance of SLAM systems depends on the environment.
SLAM systems that use depth sensors are the preeminent
choice for indoor scenarios due to the accuracy of mod-
ern sensors and the desire of many practitioners to build
dense geometric models of the environment. In many cases,
indoor environments present linear features such as line
segments (2D) or planar facets (3D), which can be detected
robustly [20]. Such features have many benefits, including
ease of detection and quality of outlier rejection. However,
they also present challenges, including correspondence cal-
culation, optimization robustness, and long-term map qual-
ity. This paper addresses these challenges individually and
presents a state-of-the-art SLAM system for rank deficient
constraints, which we call (RD-SLAM).

RD-SLAM is designed for environments that contain
linear features and addresses two weaknesses inherent in
dense iterative closest point (ICP) [3], [4] and correlative
scan matching (CSM) [17]. First, ICP-based methods are not
robust to outliers, while CSM cannot compute exact maxi-
mum likelihood transformations due to discretization. Sec-
ond, neither algorithm is memory efficient online, typically
requiring storage of raw point clouds or an occupancy grid.
As robotic applications grow in scale and operate on ever
lighter hardware, these representations become intractable.

1 College of Information and Computer Sciences, University of Mas-
sachusetts, Amherst, MA 01003, USA. Email: snashed@umass.edu

2 Amazon Lab126, 1100 Enterprise Way, Sunnyvale, CA 94089, USA.
Email: {jongpark,rogerweb}@amazon.com

3 Amazon Robotics, 300 Riverpark Dr, North Reading, MA 01864, USA.
Email: josepdur@amazon.com

Fig. 1: RD-SLAM on 2D laser data with (right) and without
(left) prevention of optimization along degenerate axes, which are
unconstrained directions detected as the null space of the set of
visual constraints. Long straight hallways produce degenerate axes
for some poses. Robot trajectory is in orange, and features in black.

To address these problems, RD-SLAM extracts line segments
or planar facets and computes relative transformations by
calculating correspondences on these larger features.

Given the lack of a distance metric between line segments
or planar facets, we offer a set of algorithms and similarity
functions for robust correspondence calculation. While linear
features are easier to detect and track, using them in non-
linear least-squares optimization problems can cause instabil-
ity since correspondences may not fully constrain the robot’s
motion. We propose an algorithm for adding regularization
terms to the optimization problem based on the approximate
null space of sets of rank deficient constraints, and its effect
is shown in Fig 1. These terms also reduce the sensitivity of
the optimizer to the uncertainty models of different sensors,
and in contrast to hard constraints may allow the optimizer
to escape local minima. We also extend an existing method
used to construct and maintain highly compressed, maximum
likelihood geometric maps to allow these maps to be updated
online as the robot’s trajectory estimate changes.

We evaluate RD-SLAM on real and simulated data, and
present experiments examining the system’s robustness to
sensor noise, memory efficiency, compute load, and accu-
racy. We also perform ablation tests including other popular
methods for each contribution. Moreover, we show that the
combined effect of improvements to correspondence calcu-
lations and co-linear factor design can lead to reductions in
compute and memory load as well as decrease the frequency
of large localization errors.

II. RELATED WORK

Metric SLAM is a well-studied topic of research and,
broadly speaking, metric SLAM algorithms build either geo-
metric reconstructions or maps of keypoints and landmarks.
In this paper we restrict our attention to reconstructions of
regular or man-made environments. Several existing SLAM
algorithms have been designed for such environments. Many
make strong assumptions, such as planar features appearing
uniform [25], [8], completely rectilinear environments [7], or
access to custom feature detectors [12]. Here, we make only
the assumption that the environment contains line segments
or planar facets that may be extracted from depth sensor data.
In most deployment contexts this assumption is easily met.

Virtually all metric SLAM algorithms compute the affine
transformation of the robot between successive frames, and
many algorithms for computing these transformations are
derivatives of the iterative closest point (ICP) method in
that they compute correspondences and then minimize the
distances between correspondences through optimization.
ICP variants designed for specific environments or to ad-
dress certain shortcomings of vanilla ICP include different
methods of computing correspondences [5] or changing the
minimization routine, such as by adding noise [18]. A survey
of ICP algorithms is presented in [19]. Generalizations have
also been established [13], [21], giving rise to algorithms
using different physical primitives.

Both 2D and 3D RD-SLAM belong to a family of ICP-
based methods which compute correspondences between
geometric primitives such as line segments [1], [2], poly-
lines [9], or planes [11]. One weakness of such approaches
is their reliance on extraction of geometric objects and
robust definitions of similarity or distance between objects
in order to compute accurate correspondences. Fortunately,
line segment extraction in 2D [16], and plane extraction in
3D [20], are mature areas of research. Various definitions
for distance between line segments or between planar facets,
which we extend here, have been explored in the context of
line segment matching and are summarized nicely in [24].

Although many approaches use potentially rank deficient
features, only a small number have investigated using co-
linear constraints. Some approaches incorporate them into
already constrained factor graphs [15], while most detect de-
generacy online [10], [26], [6], [23]. RD-SLAM takes the lat-
ter approach, but differs in that it does not explicitly project
inertial measurements along degenerate dimensions or do
any hard switching between sensing modalities. Instead,
we detect degeneracies and add regularization terms to the
existing optimization problem. An additional challenge when
constructing long term maps is how to combine primitives
which describe the same physical object. RD-SLAM follows
the approach of Long Term Vector Mapping [14], which uses
shape covariance matrix decomposition. A similar trick was
presented in [22] under the term recursive least-squares. This
paper extends these methods to work online in the event that
primitives may need to be transformed when the underlying
pose estimates change during optimization.

III. RANK-DEFICIENT SLAM

RD-SLAM does not describe a single trick or insight.
Rather, we describe a set of challenges and the corresponding
types of approaches which result in functioning systems.
These challenges include choosing the right level of abstrac-
tion for feature detection and calculating feature correspon-
dences §3.A, using rank deficient constraints robustly §3.B,
and maintaining a consistent, high-accuracy, low-memory
map in the context of online trajectory optimization §3.C.

A. Feature Correspondences

Both dense reconstructions from point clouds and
keypoint-based systems typically compute correspondences.
These computations are costly, can require non-trivial data
structures, and often lack robustness. False correspondences
are common and in the absence of advanced non-linear
optimization techniques may cause catastrophic failure. Ge-
ometric primitives such as line segments and planar facets
inherently mitigate some of these challenges in several ways.

First, we have fast, accurate, robust algorithms for line
segment and planar facet detection [16], [20]. Second, be-
cause of the relatively low number of features detected per
frame due to their inherent size, even naive correspondence
calculations can be done quickly. Third, large feature size
creates natural robustness to false correspondences, since the
relative motion of the robot between frames is typically small
compared to the distance between distinct features. However,
such features present a unique challenge in defining simi-
larity functions or distance measures. Since an established
distance metric over SE(2) or SE(3) does not exist, simi-
larity functions are typically constructed heuristically, often
by summing or otherwise combining proper distance metrics
defined over subsets of SE(2) or SE(3). Below, we present
pseudometrics for robustly computing correspondences be-
tween line segments and planar facets.

1) Line Segments in 2D: We derive a measure for line-
segment similarity (LSS) under the following assumptions.
First, corresponding line segments extracted from successive
scans should have similar location and orientation. And
second, corresponding line segments do not need to be co-
located; they may be only co-linear. Not only does co-
linearity provide sufficient information as long as there are
at least 2 non-parallel segments, but it is also more robust
than co-location in some scenarios where this condition is
not met, such as when travelling down a straight corridor, or
when only part of the feature can be detected by the robot
due to occlusion or range and field of view limitations.

Many formulae for LSS have been proposed [24], but none
meet all of the criteria which follow from the assumptions
above. Thus, we present a definition of LSS which is
sensitive to the relative positions of segments anisotropically.
Given line segments a and b, we define LSS(a, b) as

LSS(a, b) =
(
(dθ/τθ)

2 + (d⊥/τ⊥)2 + (d‖/τ‖)
2
) 1

2 (1)

where d∗ are different metrics over subspaces of SE(2), and
τ∗ are scale factors based on sensor characteristics.

Fig. 2: Variables for computing LSS between line segments
a (red) and b (blue).

Let line segments a and b have endpoints pi1, p
i
2, lengths

li, centers of mass p̄i, and orientations θi for i = a, b, as in
Figure 2. We define the d∗ terms of LSS as follows.

dθ = | sin(θb − θa)| and d⊥ = |(p̄b − p̄a) · n̂a|, (2)

where n̂a is the unit vector normal to line segment a.
Defining segment a such that la ≥ lb allows d⊥ to be
symmetric. Distance in the parallel direction is non-zero if
the projection of both pb1 and pb2 onto the line defined by
segment a fall outside the boundaries of segment a. That is,

d‖ = min(d1‖, d
2
‖), (3)

where

dj‖ =


tj − la tj > la

0 0 ≤ tj ≤ la
|tj | tj < 0.

(4)

Here,

tj = (pbj − pa1) · (pa2 − pa1)

||(pa2 − pa1)||
where j = 1, 2. (5)

2) Planar Facets in 3D: Planar facet similarity (PFS) can
be computed robustly in a similar manner. Given two planar
facets a and b, PFS is composed of similar terms.

PFS(a, b) =
(
(dθ/τθ)

2 + (d⊥/τ⊥)2 + (d‖/τ‖)
2
) 1

2 , (6)

where dθ and d⊥ become the angle between normal vec-
tors and the point to plane distance, respectively. One key
difference is the definition of d‖. Determining if a pair of
planar facets overlap is expensive when considering the hull
of each facet explicitly. Therefore, we represent each facet
by an ellipse which we derive from the eigenvectors and
eigenvalues of a shape covariance matrix constructed from
the subset of the pointcloud corresponding to the planar
facet, shown in Figure 3. Given ellipses a and b where
δθ(a, b) < τθ, defined by centers p̄a, p̄b, eigenvectors ea1 , ea2
and eb1, eb2, and eigenvalues λa1 , λa2 and λb1, λb2, we project b
onto a, producing sets of eigenvectors which are co-planar.
Let these new eigenvectors and eigenvalues be eb

′

1 , eb
′

2 and
λb

′

1 , λb
′

2 , respectively. We define d‖ as

d‖ = max(0, (||p̄a − p̄b|| − ||Γa|| − ||Γb||)). (7)

The equations presented below for Γ∗ assume ellipse ∗
has been transformed so p̄∗ is at the origin with e∗1 · ŷ = 0.

Γ∗ = 〈tλ∗1λ∗2 cos(θ), tλ∗1λ
∗
2 sin(θ)〉, (8)

where

t =
(√

(λ∗1)2 cos2(θ) + (λ∗2)2 sin2(θ)
)−1

, (9)
and

Feature overlap post registration

Fig. 3: Ellipses for features a (blue) and b (red) detect overlap
using the sum of projections (Γ∗) and the distance between
feature centers. Purple patches show actual feature overlap.

θ = arctan(p̄∗y, p̄
∗
x). (10)

In addition to the LSS and PFS pseudometrics, we also
find that discarding features based roughly on size adds
additional robustness. We discard line segments shorter than
20cm and discard planar facets with area less than 0.16m2.

B. Dealing with Rank Deficient Constraints

Given a set of correspondences C, where ca,b ∈ C relates
feature a to feature b visible at times ti and tj , respectively,
we can generally write the optimization problem for visual
features using co-linear or co-planar constraints as

X∗ = argmin
X

∑
ca,b∈C

dθ(a,Aijb) + d⊥(a,Aijb). (11)

where X∗ is the MLE trajectory and Aij transforms features
observed at pose xj to the frame of pose xi. The obvious
limitation of such a constraint is the potential lack of
information along one or more axes. Such situations are com-
mon when sensor sampling density, field of view, or range
decrease, limiting the number and informatic diversity of
observed features. Computation constraints that force smaller
optimization windows have a similar effect, since they lower
the probability of making informative data associations.

Consider pose xt and the set of correspondences Ct, where
∀ca,b ∈ Ct, either a or b was observed at time t. Let F be
the set of all features f such that cf,∗ ∈ Ct. A scaled version
of the second moment matrix is then

M =
∑
f∈F

n̂f n̂
T
f , (12)

where n̂f is the unit normal of feature f . Analytically,
degeneracy can be detected by performing Gaussian elimi-
nation on M . However, noise in depth data results in feature
normal estimates that almost always produce matrices that
are technically full rank. This can cause the optimizer to
find global minima with respect to d⊥ that are not accurate,
due to low signal to noise ratios in the null directions.

Algorithm 1 NULL SPACE APPROXIMATION

1: Input: Set of features F , threshold τκ
2: Output: Basis of null(Mt), Nt
3: N ← ∅, M ← [0]
4: for f ∈ F do
5: M ←M + n̂f n̂

T
f

6: V ΛV −1 ← EIGENDECOMPOSITION(M)
7: for λi ∈ diag(Λ) where λi 6= λmax do
8: κ← λmax/λi
9: if κ > τκ then

10: Nt ← Nt ∪ V∗,i
11: return Nt

To solve this, we approximate the null-space of M and
apply constraints along all null directions. In contrast to
other approaches, which use ‘hard’ constraints to prevent
the optimizer from moving along null directions at all, we
enforce these constraints as regularization terms, or ‘soft’
constraints, essentially constraining the optimizer to find a
solution by moving only along well-conditioned directions
to within some tolerance.

The method for approximating null(M) is shown in Al-
gorithm 1. We analyze M ’s condition numbers, κ, which,
because M is normal, are computed from its eigenvalues.
Large condition numbers indicate degenerate dimensions,
and in our experiments we used τκ = 10.0. In practice, τκ is
easy to tune as most degenerate axes have condition numbers
orders of magnitude higher than well-conditioned axes. For
each pose within the optimization window, Algorithm 1
produces a set Nt that represents a basis of the null space
of constraints on pose xt. Regularization terms of the form

J(X) =

tf∑
t=1

∑
η̂∈Nt

((xt − xt−1)− (ut − xt−1)) · η̂ (13)

are then added to the cost functions for each pose. Here, η̂ are
basis vectors describing the null space of visual constraints,
u are the inertial measurements, and x are the pose variables.
Combining equations 11 and 13 together, along with a cost
function for the inertial measurements, we get an overall
objective similar to

X∗ = argmin
X

tf∑
t=1

||(xt − xt−1)− (ut − xt−1)||

+
∑
ca,b∈C

dθ(a,Aijb) + d⊥(a,Aijb)

+

tf∑
t=1

∑
η̂∈Nt

((xt − xt−1)− (ut − xt−1)) · η̂.

(14)

C. Map Updates

To store long-term representations of the environment we
adapt Long-term Vector Mapping (LTVM) [14] to work
online. Online LTVM checks newly detected features reg-
istered in global frame against an existing map of features,
which is empty when the robot is first deployed. Each frame,
statistical tests are performed which estimate the likelihood

that a given feature corresponds to a physical entity already
represented in the map. If the new feature represents an
unobserved object it is added to the map. If it represents
an observation of an already mapped object, the map feature
is updated as a weighted sum of the new feature and the map
feature, where the weight is the number of raw observations
supporting each feature. We find that different statistical tests
work well for different features. For line segments we use
chi-squared tests as in [14], and for planar facets we use
conservative thresholds of projections based on the elliptical
representation presented in §3.A.2.

Merging can also be performed between two features
already in the map if their boundaries grow together. This
process is expensive in the sense that it scales as O(n2),
where n is the number of features in the map, since every
mapped feature must be checked to see if it can merge
with any other feature. However, in practice n is small
since features are merged incrementally. Even for building-
scale maps, n is typically in the hundreds or thousands.
Moreover, space partitioning data structures such as kd-trees
can eliminate most comparisons, providing further speedup.

One of the major strengths of LTVM is the maintenance
of maximum likelihood feature location estimates along with
a high compression ratio. This is possible via storing the
shape covariance matrix representation of the supporting
observations of each line segment or planar facet in a
decoupled manner. However, features are extracted in robot
frame, but the map updates are done in global frame. Thus,
the decoupled representation must be rotated to global frame.
We represent features using decoupled shape covariance
matrices constructed from N depth observations p,

S =

N∑
i=1

pip
T
i −Np̄p̄T = So −NS̄, (15)

where So represents the orientation of the feature, and S̄ is
the outer product of the feature’s centroid, p̄. Given an affine
transformation defined by rotation R and translation T , we
can compute the transformed matrices S̄′ and S′o as

S̄′ = (Rp̄+ T)(Rp̄+ T)T (16)
and

S′o = N(R
1

N
SoR

T −RS̄RT + S̄′). (17)

IV. RESULTS

We are mostly concerned with compute and memory effi-
ciency and with accuracy and robustness given low quality
sensing containing significant noise and visual artifacts. We
hypothesize that under these constraints, algorithms from the
RD-SLAM family, and specifically the improvements pre-
sented in this paper, offer advantageous tradeoffs compared
to dense ICP methods as well as methods that deal with
rank-deficiency by enforcing hard constraints on factors.

To test this hypothesis, we conduct several experiments
using both simulated 2D lidar and 3D point cloud data and
2D and 3D data collected at the University of Massachusetts
Amherst. We used a Hokuyo UST-10LX and an Asus Xtion
PRO for lidar and point cloud data, respectively. Robots out-
fitted with these sensors were tele-operated around buildings

at the university which include a number of straight hallways
with limited features as well as some open areas with widths
that exceed the sensor range in some places. Importantly,
these data sets represent canonical human environments with
large, easily observable features that contain only partial
information. Moreover, many points in the trajectory cannot
be fully constrained based on visual features. The robot
often receives information that constrains only one positional
axis, and this condition can persist for periods longer than
the sliding window used for optimization which is typically
1 to 2 seconds. For each sensor, data was collected from
5 deployments, each taking a different path through the
same environment. All timing experiments were done on a
3.70GHz quad-core processor.
A. Compute and Memory Efficiency

To test compute efficiency, we compare the time required
for both correspondence calculations and pose optimization
for RD-SLAM against dense ICP. We include the time
required to extract features into the timing results for RD-
SLAM, and we use a dense ICP implementation with a kd-
tree for efficiently pruning non-correspondences. We find
that RD-SLAM takes on average 7ms to produce 3D cor-
respondences, while the ICP implementation requires 22ms
on average. Time saved during optimization is also substan-
tial. With an optimization window of 20 poses, RD-SLAM
uses an average of 61ms to converge while point-to-point
correspondences take on average 177ms.

To test memory efficiency, we compare the space required
to store several different possible map representations using
a simulated environment. Storing raw point clouds in 3D
requires about 10MB per second. This grows unbounded
over the deployment and is clearly infeasible. Creating a
3D occupancy grid with a resolution of 2cm requires nearly
100MB to explore our roughly 10m by 10m environment.
Storing the map in an oct-tree reduces memory, but is
still more expensive than planar representations. Storing all
planar facets extracted during the deployment also grows
without bound, but in our simulation it requires only roughly
1MB for every 10,000 poses. Lastly, merging planar facets
incrementally allows the robot to store the entire map in
about 10KB. Compute and memory savings are more pro-
nounced for 3D data, but are still significant for 2D data.

B. Accuracy
Figures 5, and 6 show the effects of different optimization

routines on accuracy using simulated 2D data. We use 2D
simulations instead of 3D simulations because it is easier
to construct more complex and realistic noise models. The
main hypothesis is that soft constraints allow the solver more
flexibility, which is beneficial in some scenarios, and the
histograms illustrate how soft and hard constraints perform
when optimizing co-linear constraints. The key takeaway is
that although hard constraints are slightly more likely to
produce very low error, they are also more likely to produce
higher error, and in this respect soft constraints seem to
increase the probability that a given location estimate will
have error less than some ε, for sufficiently large ε.

Figure 4 shows a qualitative comparison between no
constraints, hard constraints, and soft constraints on a real
laser data set. We believe the increase in accuracy compared
to the naive method (no constraints) is due primarily to
the elimination of catastrophic localization failures, where
the optimizer finds minima far from the ground truth. This
behavior may be a natural consequence of optimization along
directions with no real information or where the signal to
noise ratio is very small, corresponding to the rank-deficient
axes. We believe the decreased upper bound on error relative
to optimizers using hard constraints is due to an entirely
different phenomenon. In this case, soft constraints may
open paths to minima with lower absolute values that are
not accessible when using hard constraints, in some sense
increasing the basin of convergence for some minima. This
may be most beneficial when dealing with exceptionally
noisy data that does not contain a strong signal.

a)

c)

b)

Fig. 4: Maps produced using optimization over co-linear
visual constraints. In a), no additional terms are added. In
b), optimization along degenerate axes is prohibited. In c),
regularization terms are added to discourage, but not prevent
changes along degenerate axes.

Fig. 5: Histogram of translation MSE w.r.t. constraint type.

C. Robustness

Figures 7 and 8 compare the accuracy of dense ICP and the
proposed methods for computing correspondences between
line segments under different levels of simulated noise. As
expected, dense methods lack robustness to outliers in point-
to-point correspondence calculations, and we see l2 filtering
increases robustness substantially. This is due to a small
number of features during each deployment that erroneously
pass each filter individually, but are not in reality reliable

Fig. 6: Histogram of rotation MSE w.r.t. constraints type.

features. Decreasing the accepted range for correspondences
also reduces this phenomenon, but at the cost of excluding
many true correspondences.

Fig. 7: Cumulative density function of MSE for translation.
Small, Medium, and Large denote noise levels, and ICP and
L2 denote method.

Fig. 8: Cumulative density function of MSE for rotation.
Small, Medium, and Large denote noise levels, and ICP and
L2 denote method.

V. CONCLUSION

In this paper we present several extensions to SLAM sub-
systems which use rank-deficient constraints between geo-
metric features, resulting in a state-of-the-art SLAM system
for regular, man-made environments. We demonstrated via
ablation tests on simulated and real-world data that our ex-
tensions increase localization accuracy and reduce compute
load, memory use, and susceptibility to outliers. Future work
may include research on active sensing in order to avoid or
exploit partial information present in the environment.

REFERENCES

[1] M. Alshawa. lcl: Iterative closest line a novel point cloud registration
algorithm based on linear features. Ekscentar, (10):53–59, 2007.

[2] S.-Y. An, J.-G. Kang, L.-K. Lee, and S.-Y. Oh. Slam with salient
line feature extraction in indoor environments. In Control Automation
Robotics & Vision (ICARCV), 2010 11th International Conference on,
pages 410–416. IEEE, 2010.

[3] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes.
In Sensor Fusion IV: Control Paradigms and Data Structures, volume
1611. International Society for Optics and Photonics, 1992.

[4] Y. Chen and G. Medioni. Object modelling by registration of multiple
range images. Image and vision computing, 10(3):145–155, 1992.

[5] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The trimmed
iterative closest point algorithm. In Pattern Recognition, 2002.
Proceedings. 16th International Conference on. IEEE, 2002.

[6] H. Cho, S. Yeon, H. Choi, and N. Doh. Detection and compensation
of degeneracy cases for imu-kinect integrated continuous slam with
plane features. Sensors, 18(4):935, 2018.

[7] Y.-H. Choi, T.-K. Lee, and S.-Y. Oh. A line feature based slam
with low grade range sensors using geometric constraints and active
exploration for mobile robot. Autonomous Robots, 24(1):13–27, 2008.

[8] A. Concha Belenguer and J. Civera Sancho. Dpptam: Dense piecewise
planar tracking and mapping from a monocular sequence. In Proc.
IEEE/RSJ Int. Conf. Intell. Rob. Syst., number ART-2015-92153, 2015.

[9] X. He, J. Zhao, L. Sun, Y. Huang, X. Zhang, J. Li, and C. Ye.
Automatic vector-based road structure mapping using multi-beam
lidar. In ITSC, pages 417–422. IEEE, 2018.

[10] A. Hinduja, B.-J. Ho, and M. Kaess. Degeneracy-aware factors with
applications to underwater slam. In IROS, pages 1293–1299, 2019.

[11] M. Hosseinzadeh, Y. Latif, T. Pham, N. Suenderhauf, and I. Reid.
Structure aware slam using quadrics and planes. In Asian Conference
on Computer Vision, pages 410–426. Springer, 2018.

[12] S.-Y. Hwang and J.-B. Song. Monocular vision-based slam in
indoor environment using corner, lamp, and door features from
upward-looking camera. IEEE Transactions on Industrial Electronics,
58(10):4804–4812, 2011.

[13] Q. Li and J. Griffiths. Iterative closest geometric objects registration.
Computers & mathematics with applications, 40(10-11), 2000.

[14] S. Nashed and J. Biswas. Curating long-term vector maps. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on, pages 4643–4648. IEEE, 2016.

[15] S. B. Nashed and J. Biswas. Human-in-the-loop slam. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[16] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart. A comparison
of line extraction algorithms using 2d laser rangefinder for indoor
mobile robotics. In Intelligent Robots and Systems, 2005.(IROS 2005).
2005 IEEE/RSJ International Conference. IEEE, 2005.

[17] E. B. Olson. Real-time correlative scan matching. Ann Arbor,
1001:48109, 2009.

[18] G. P. Penney, P. J. Edwards, A. P. King, J. M. Blackall, P. G.
Batchelor, and D. J. Hawkes. A stochastic iterative closest point
algorithm (stochasticp). In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 762–
769. Springer, 2001.

[19] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat. Comparing icp
variants on real-world data sets. Autonomous Robots, 34(3), 2013.

[20] P. F. Proença and Y. Gao. Fast cylinder and plane extraction from
depth cameras for visual odometry. In IROS. IEEE, 2018.

[21] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Robotics:
science and systems, volume 2, page 435, 2009.

[22] H. J. Sohn and B. K. Kim. Vecslam: an efficient vector-based slam
algorithm for indoor environments. Journal of Intelligent and Robotic
Systems, 56(3):301–318, 2009.

[23] E. Westman, A. Hinduja, and M. Kaess. Feature-based slam for
imaging sonar with under-constrained landmarks. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages
1–9. IEEE, 2018.

[24] S. Wirtz and D. Paulus. Evaluation of established line segment distance
functions. Pattern Recognition and Image Analysis, 26(2), 2016.

[25] S. Yang, Y. Song, M. Kaess, and S. Scherer. Pop-up slam: Se-
mantic monocular plane slam for low-texture environments. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1222–1229. IEEE, 2016.

[26] J. Zhang, M. Kaess, and S. Singh. On degeneracy of optimization-
based state estimation problems. In ICRA. IEEE, 2016.

