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Abstract— Autonomous systems often use approximate plan-
ners that exploit state abstractions to solve large MDPs in
real-time decision-making problems. However, these planners
can eliminate details needed to produce effective behavior in
autonomous systems. We therefore propose a novel model, a
partially abstract MDP, with a set of abstract states that each
compress a set of ground states to condense irrelevant details
and a set of ground states that expand from a set of expanded
abstract states to retain relevant details. This paper offers (1)
a definition of a partially abstract MDP that (2) generalizes
its ground MDP and its abstract MDP and exhibits bounded
optimality depending on its abstract MDP along with (3) a lazy
algorithm for planning and execution in autonomous systems.
The result is a scalable approach that computes near-optimal
solutions to large problems in minutes rather than hours.

I. INTRODUCTION

Markov decision processes (MDP) are a general model for
reasoning in fully observable, stochastic environments that
have been used in many autonomous systems, such as search
and rescue robots [1], [2], planetary rovers [3], [4], and self-
driving cars [5], [6], [7], [8]. Typically, since autonomous
systems operate in complex domains, there is a need to
include many state factors in an MDP to produce effective
operation. For example, a self-driving vehicle that uses
an MDP to navigate roads and intersections includes each
vehicle position, pedestrian location, and traffic light [9],
[10], [11]. However, given the exponential growth of the state
space in the number of state factors, autonomous systems
must often solve an MDP approximately in real-time settings.

A common approach to solving MDPs approximately is to
compute an optimal solution to some abstraction of an MDP.
Recent work has focused on abstract MDPs that have ab-
stract states that partition the ground states of a ground MDP
according to certain criteria [12]. However, while abstract
MDPs can be solved much faster than ground MDPs, they
can eliminate details needed to produce effective behavior
in autonomous systems. Ideally, for autonomous systems
to produce effective behavior in an acceptable amount of
time, an abstract MDP should not only condense unimportant
details but also retain important details of the ground MDP.

We therefore offer a novel model, called a partially
abstract MDP, that generalizes ground MDPs and abstract
MDPs. Similar to an abstract MDP, it has a set of abstract
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Fig. 1. A satellite orbiting Earth must take photos of 5 points of interests
with 3 weather levels that change gradually. Initially, it sketches an abstract
MDP M̄ that compresses 45927 ground states of a ground MDP M into
672 abstract states (gray) of 3×3 abstract cells and 2 abstract weather levels.
At each new abstract state along its path (pink), it refines the abstract MDP
M̄ into a partially abstract MDP M̃ that expands the new abstract state
and other informative abstract states based on either a naive (blue), greedy
(orange), or proactive (green) expansion strategy into ground states (white).
The graph shows that each partially abstract MDP M̃i is solved in less than
1% of the planning time of the ground MDP M for each orbit position.

states that each compress a set of ground states to condense
irrelevant details. However, similar to a ground MDP, it has
a set of ground states that expand from a set of expanded
abstract states to retain relevant details. Hence, a partially
abstract MDP can be an adjustable balance of the coarse-
grained abstract MDP and the fine-grained ground MDP.

Given an abstract MDP and a partially abstract MDP, we
propose a lazy algorithm for planning and execution that al-
lows an autonomous system to complete a task described by a
ground MDP in Figure 1. Before starting the task, the system
builds and solves an abstract MDP where each abstract state
compresses a set of ground states. While completing the task,
every time a new abstract state is encountered, the system
builds and solves a partially abstract MDP where the new
abstract state and other informative abstract states based on
an expansion strategy expand into a set of ground states. By
initially sketching an abstract MDP offline and later refining
it into partially abstract MDPs online, the system produces
effective behavior in an acceptable amount of time without
solving the ground MDP. This algorithm is inspired by the
SketchRefine method for solving large integer programs [13].

Our contributions are: (1) a definition of a partially abstract
MDP, (2) an analysis that a partially abstract MDP gener-
alizes its ground MDP and its abstract MDP and exhibits
bounded optimality depending on its abstract MDP, and (3)
a lazy algorithm for planning and execution in autonomous
systems. Most importantly, we demonstrate that our approach
is near-optimal and scalable in an Earth observation domain.



II. RELATED WORK

The desire to solve large MDPs is not new, and techniques
for doing so generally adopt one of three approaches. First,
there are approximate solvers that use dynamic programming
methods based on value or policy iteration [14], [15] and
linear programming [16], [17], [18], [19]. Second, some
methods compute partial policies on a subset of the ground
states and re-plan if the agent encounters a state for which the
partial policy is undefined [20], [21]. Third, optimal policies
are computed on abstractions of the original problem, where
there is a surjective mapping from the original ground states
to the abstract states [12]. Our approach combines insights
from both partial policies and abstractions but does not
preclude the use of approximate solvers.

Using abstractions to reduce the size of a problem is a
natural and popular approach to solving large MDPs. The
quality of these policies depends heavily on the abstraction
scheme, and many abstraction methods have been proposed.
Some strict definitions include bisimulation [22], statistical
bisimulation [23], and bounded MDPs [24]. Abstractions
based on homomorphisms [25], [26] and generic change
of basis have also been proposed [27]. Abstractions also
support hierarchical systems, such as MDP [28] and object
hierarchies [29]. Abstractions for continuous variables [30]
and across time [31] have been examined as well. Some work
even uses temporal abstractions derived from analytically
computed landmarks to summarize policies for stochastic
shortest path (SSP) problems, a subclass of MDPs [32].
Another form of abstraction is determinization, or its more
general form, reduced models, which forms abstractions over
action outcomes [33], [34]. Our approach retains the potential
for substantial state space reductions shared by abstraction-
based approaches but remains more robust to abstraction
schemes because it computes policies on ground states.

Computing partial policies is an approach with a history of
success. FF-Replan [35], a remarkably simple yet effective
algorithm for planning in MDPs, works by determinizing
an MDP, constructing a plan to the determinization, and re-
planning if the agent reaches an unexpected state. Recently,
Soft-FLARES [36] achieved impressive results on large SSPs
by probabilistically labeling ε-consistent state values within
a horizon. There has also been work on designing meta-level
controllers to reason about when to expand additional states
within an MDP while solving for a partial policy [37]. Partial
policies over actions have even been explored in an effort
to bias Monte Carlo tree search over policies online [38].
Our approach benefits from many properties enjoyed by
partial policy approaches, including work on selecting which
states the partial policy should consider, and the eventual
construction of a complete policy as the agent visits new
states during deployment. One unique benefit of partially
abstract MDPs is that the partial policy is globally influenced
by relevant features of the ground state space via transitions
between ground states and abstract states.

III. BACKGROUND

A ground MDP is represented by a tuple M =
〈S,A, T,R〉 [39]. The space of states is S. The space of
actions is A. The transition function T : S×A×S → [0, 1]
represents the probability of reaching a state s′ ∈ S after
performing an action a ∈ A in a state s ∈ S. The reward
function R : S×A→ R represents the immediate reward of
performing an action a ∈ A in a state s ∈ S. A solution to an
MDP is a policy π : S → A indicating that an action π(s) ∈
A should be performed in a state s ∈ S. A policy π induces
a value function V π : S → R representing the expected
discounted cumulative reward V π(s) ∈ R for each state
s ∈ S given a discount factor 0 ≤ γ < 1. An optimal policy
π∗ maximizes the expected discounted cumulative reward for
each state s ∈ S by meeting the Bellman optimality equation
V ∗(s) = maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′) + γV ∗(s′)].

Specifying an abstract MDP M̄ of a ground MDP M
requires two functions [12]. First, an abstraction function
φ : S → S̄ maps a ground state s ∈ S to an abstract state
s̄ ∈ S̄. Second, an inverse abstraction function φ−1 : S̄ →
P(S) maps an abstract state s̄ ∈ S̄ to a set of ground states
S ⊆ P(S). The condition φ(s) = s̄ ⇔ s ∈ φ−1(s̄) must
hold for each ground state s ∈ S and abstract state s̄ ∈ S̄.

An abstract MDP is represented by a tuple M̄ =
〈S̄, A, T̄ , R̄〉 [12]. The space of abstract states is S̄ =
{φ(s) | s ∈ S} such that a set of ground states S is
abstracted by an abstraction function φ. The space of ground
actions is A. The abstract transition function is T̄ (s̄, a, s̄′) =∑
s∈φ−1(s̄) ψ(s)

∑
s′∈φ−1(s̄′) T (s, a, s′). The abstract reward

function is R̄(s̄, a) =
∑
s∈φ−1(s̄) ψ(s)R(s, a). Note that a

weighting function ψ : S → [0, 1] represents the probability
of being in a ground state s ∈ S in an abstract state φ(s) ∈ S̄.

IV. PARTIAL STATE ABSTRACTIONS

We offer a novel model, a partially abstract MDP, that has
two levels of abstraction: a set of abstract states that each
compress a set of ground states and a set of ground states
that expand from a set of expanded abstract states. We offer
a description of a partially abstract MDP below.

Definition 1. A partially abstract MDP, M̃ = 〈S̃, A, T̃ , R̃〉,
is a partially abstract version of a ground MDP M =
〈S,A, T,R〉 and an abstract MDP M̄ = 〈S̄, A, T̄ , R̄〉, where
• S̃ = α ∪ β is a set of partially abstract states with

a set of ground states α = {φ−1(s̄) | s̄ ∈ Γ} and
a set of abstract states β = {S̄ \ Γ} such that a set
of expanded abstract states Γ ⊆ S̄ is expanded by an
inverse abstraction function φ−1,

• A is a set of ground actions,
• T̃ : S̃×A× S̃ → [0, 1] is a partially abstract transition

function composed of a ground transition function T
and an abstract transition function T̄ , and

• R̃ : S̃ × A → R is a partially abstract reward
function composed of a ground reward function R and
an abstract reward function R̄.
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Fig. 2. An example range of state abstractions where a ground MDP is the least abstract and an abstract MDP is the most abstract. The ground MDP has
ground states (left), the partially abstract MDP has ground states and abstract states (center), and the abstract MDP has abstract states (right). By adjusting
the states of a partially abstract MDP, we can get a ground MDP if all abstract states are expanded or an abstract MDP if all ground states are compressed.

The partially abstract transition and reward functions of a
partially abstract MDP are defined in the following way.

T̃ (s̃, a, s̃′) =


T (s̃, a, s̃′) if s̃ ∈ α, s̃′ ∈ α∑
s′∈φ−1(s̃′) T (s̃, a, s′) if s̃ ∈ α, s̃′ ∈ β∑
s∈φ−1(s̃) ψ(s)T (s, a, s̃′) if s̃ ∈ β, s̃′ ∈ α

T̄ (s̃, a, s̃′) if s̃ ∈ β, s̃′ ∈ β

R̃(s̃, a) =

{
R(s̃, a) if s̃ ∈ α
R̄(s̃, a) if s̃ ∈ β

Figure 2 illustrates a spectrum of state abstractions that
span a ground MDP, partially abstract MDPs, and an abstract
MDP given an abstraction and inverse abstraction function.

A. Generality

A partially abstract MDP generalizes its ground MDP and
its abstract MDP. In other words, a partially abstract MDP is
a hybridization of a ground MDP and an abstract MDP. We
prove that every ground MDP and every abstract MDP can
naturally be represented as a partially abstract MDP below.

Remark 1. Every ground MDP M and abstract MDP M̄ is
a partially abstract MDP M̃ .

Proof Sketch. Suppose a partially abstract MDP M̃ has a set
of expanded abstract states Γ set to either S̄ (for a ground
MDP M ) or ∅ (for an abstract MDP M̄ ). The space of
partially abstract states S̃ is then either a union of a set of
ground states α = S and a set of abstract states β = ∅ (for a
ground MDP M ) or a union of a set of ground states α = ∅
and a set of abstract states β = S̄ (for an abstract MDP M̄ ).
Hence, the partially abstract transition and reward functions
T̃ and R̃ reduce to either the ground functions T and R (for
a ground MDP M ) or the abstract functions T̄ and R̄ (for
an abstract MDP M̄ ). Every ground MDP M and abstract
MDP M̄ is therefore a partially abstract MDP M̃ .

B. Optimality

A partially abstract MDP can exhibit bounded optimal-
ity depending on the properties of its abstract MDP. At
a high level, this section describes a well-known abstract

MDP, outlines a standard solution method, and proves that
a partially abstract MDP that uses this abstract MDP and
solution method exhibits a lower bound on optimality.

We first consider an abstract MDP described as a bounded
parameter MDP that is ε-homogeneous with respect to a
ground MDP M = 〈S,A, T,R〉 [24]. A bounded parameter
MDP is described by a tuple M = 〈S,A, T ,R〉. The space
of states is S = {B1,B2, . . . ,Bn} that partitions the space
of ground states S = B1 ∪ B2 ∪ · · · ∪ Bn. The space of
actions is A = A. The transition function T : S ×A×S →
[0, 1] × [0, 1] represents a closed form probability interval
[lT (s,a,s′), uT (s,a,s′)] with 0 ≤ lT (s,a,s′) ≤ uT (s,a,s′) ≤ 1 of
reaching a state s′ ∈ S after performing an action a ∈ A
in a state s ∈ S . The reward function R : S × A →
R × R represents a closed form immediate reward interval
[lR(s,a), uR(s,a)] with −∞ ≤ lR(s,a) ≤ uR(s,a) ≤ ∞
of performing an action a ∈ A in a state s ∈ S. A
bounded parameter MDP M is ε-homogeneous if and only
if the space of states S = {B1,B2, . . . ,Bn} partitions the
space of ground states S = B1 ∪ B2 ∪ · · · ∪ Bn such that
the conditions |R(p) − R(q)| ≤ ε and

∑
r∈Bj

T (p, a, r) −∑
r∈Bj

T (q, a, r)| ≤ ε hold for each state Bi ∈ S , state
Bj ∈ S, action a ∈ A, ground state p ∈ Bi, and ground state
q ∈ Bi given a similarity threshold ε.

An ε-homogeneous bounded parameter MDP can then be
solved using interval value iteration [40]. It first computes
an interval value function V : S → R × R that represents
a closed form value interval [lV(s), uV(s)] with 0 ≤ lV(s) ≤
uV(s) ≤ 1 for each ground state s ∈ S. It then computes a
pessimistic policy πpess : S → A that indicates that an action
π(s) ∈ A should be performed in a ground state s ∈ S using
the lower value bound lV(s) of the interval value function
V(s). Importantly, it has been shown that a pessimistic policy
πpess(s) induces a ground value function V (s) greater than
or equal to the lower bound value lV(s) of the interval value
function V(s) for each ground state s ∈ S.

We now show that a partially abstract MDP that expands
an abstract MDP based on an ε-homogeneous bounded-
parameter MDP exhibits a lower bound on optimality below.



Proposition 1. A partially abstract MDP M̃ that expands
an abstract MDP M̄ based on an ε-homogeneous bounded-
parameter MDP M induces a ground value function V (s)
greater than or equal to the lower bound value lV(s) of the
interval value function V(s) for each ground state s ∈ S.

Proof Sketch. Consider an abstract MDP M̄ with a space
of abstract states S̄ based on an ε-homogeneous bounded-
parameter MDP M. Suppose the abstract MDP M̄ expands
a set of expanded abstract states Γ ⊆ S̄ to get a partially
abstract MDP M̃ with a set of partially abstract states S̃ that
has a set of ground states α = {φ−1(s̄) | s̄ ∈ Γ} and a set of
abstract states β = {S̄ \Γ}. By definition, the set of abstract
states β is ε-homogeneous. Likewise, the set of ground states
α is ε-homogeneous for any ε since each ground state can be
treated as a unique abstract state. Thus, the partially abstract
MDP M̃ induces a ground value function V (s) greater than
or equal to the lower bound value lV(s) of the interval value
function V(s) for each ground state s ∈ S.

V. LAZY PLANNING AND EXECUTION

We propose a lazy algorithm that allows an autonomous
system to use abstract MDPs and partially abstract MDPs for
planning and execution in Algorithm 1. Initially, it builds and
solves an abstract MDP where each abstract state compresses
a set of ground states. Each time a new abstract state is
encountered, it builds and solves a partially abstract MDP
where the new abstract state and other informative abstract
states based on an expansion strategy expand into a set of
ground states. We discuss each phase of Algorithm 1 below.

1) Initialization: Algorithm 1 creates the ground policy
by building and solving an abstract MDP offline (Lines 1-
7). First, the abstract MDP is built from the ground MDP
using the abstraction function and solved using the planner
given the discount factor (Lines 1-2). Next, the ground policy
is initialized to the abstract policy of the abstract state for
each ground state of the ground MDP (Lines 3-6). Finally,
the visited ground states are initialized (Line 7). The loop
then starts at the first time step (Line 8).

2) Planning: Algorithm 1 updates the ground policy
by building and solving a partially abstract MDP online
(Lines 9-20). This phase only occurs if the current ground
state is not in the visited ground states (Line 9). First, the ex-
panded abstract states is a union of the current abstract state
for the current ground state and informative abstract states
generated by the EXPANSIONSTRATEGY function given the
ground MDP, the abstract MDP, and the current ground
state (Line 10-12). Next, the ground states are computed from
the expanded abstract states using the inverse abstraction
function (Line 13) and the abstract states are computed from
the abstract states of the abstract MDP and the expanded
abstract states (Line 14). After, the partially abstract MDP
is built from the ground MDP, the abstract MDP, the ground
states, and the abstract states (Line 15) and solved using
the planner given the discount factor (Line 16). Thereafter,

Algorithm 1: A lazy algorithm for planning and
execution in autonomous systems.

Input: A ground MDP M = 〈S,A, T,R〉, a horizon T , a
discount factor γ, an abstraction function φ, an
inverse abstraction function φ−1, an initial ground
state s ∈ S, and a planner Ξ

1 M̄ ← BUILDAMDP(M , φ)
2 π̄ ← Ξ.SOLVE(M̄ , γ)

3 π ← ∅
4 for s′ in S do
5 s̄′ ← φ(s′)
6 π(s′) ← π̄(s̄′)

7 Λ ← ∅
8 while t→ T do
9 if s not in Λ then

10 s̄ ← φ(s)
11 ρ ← EXPANSIONSTRATEGY(M , M̄ , s)
12 Γ ← ρ ∪ {s̄}
13 α ← {φ−1(s̄) | s̄ ∈ Γ}
14 β ← S̄ \ Γ

15 M̃ ← BUILDPAMDP(M , M̄ , α, β)
16 π̃ ← Ξ.SOLVE(M̃ , γ)

17 if π̃ is not ∅ then
18 for s′ in φ−1(s̄) do
19 π(s′) ← π̃(s′)

20 Λ ← Λ ∪ φ−1(s̄)

21 a← π(s)
22 s ← PERFORM(a)

if the planner does not exceed a planning time limit or
encounter an error due to connectivity loss or node failure,
the ground policy is updated to the partially abstract policy
for each ground state of the current abstract state (Lines 17-
19). Finally, the visited ground states are updated with the
ground states of the current abstract state (Line 20).

3) Execution: Algorithm 1 performs an action that fol-
lows the ground policy (Lines 21-22). First, the current
ground action is calculated from the ground policy given
the current ground state (Line 21). Next, the current state is
generated by performing the current action (Line 22). The
loop then continues to the next time step (Line 8).

At each time step, the algorithm must determine the
expanded abstract states for the partially abstract MDP.
Minimally, the algorithm selects the abstract state of the
current ground state for expansion on Line 10. However,
the algorithm also selects informative abstract states for
expansion using the EXPANSIONSTRATEGY function on
Line 11. Ideally, the expanded abstract states, namely the
current abstract state and the informative abstract states, must
be set in a way that produces effective behavior in real time.

Any planner can be used by the algorithm. As the main
requirement, the planner must have an MDP as input and a
policy as output. In fact, it can use any exact planner based on
dynamic programming, such as value or policy iteration [39],



heuristic search, such as LAO* [41], or linear program-
ming [42]. It can even use approximate planners based on
real-time dynamic programming [43] or determinization [34].

The algorithm offers three desirable properties for au-
tonomous systems. First, it is lazy as it only computes the
ground policy for the ground states of visited abstract states.
Second, it is attentional since it only solves partially abstract
MDPs that expand the new abstract state and informative
abstract states instead of the ground MDP. This retains small
relevant regions but ignores large irrelevant regions of the
ground MDP, which increases the accuracy while decreasing
the complexity of planning. Third, it is anytime because
it uses a default ground policy from the abstract MDP
if the planner either exceeds some planning time limit or
encounters an error due to connectivity loss or node failure.

VI. EARTH OBSERVATION

We now turn to an application of our approach to an Earth
observation domain [44]. A satellite orbiting Earth must take
photos of various points of interests P with different weather
levels W that change stochastically. The satellite starts at
longitude x ∈ X with its camera focused at latitude y ∈ Y .
The satellite can then either do no operation, shift its camera
north to the northern latitude y′ ∈ Y , shift its camera south
to the southern latitude y′′ ∈ Y , or take a photo of the
rectangular region of Earth at latitude and longitude y ∈ Y
and x ∈ X with a photo quality based on the weather level
w ∈W . Concurrently, the satellite moves east to the eastern
longitude x′ ∈ X . This repeats indefinitely. We define the
ground, abstract, and partially abstract MDPs below.

1) Ground MDP: We use a ground MDP M =
〈S,A, T,R〉 that represents the Earth observation problem.
The set of states S = X×Y ×W |P | is a cross product of a set
of longitudes X = {x1, x2, . . . , x`X} that represents the po-
sition of the satellite, a set of latitudes Y = {y1, y2, . . . , y`Y }
that represents the focus of its camera, a set of weather levels
W = {w1, w2, . . . , w`W }, and a set of points of interests
P = {p1, p2, . . . , p`P } for the state factor sizes `X , `Y ,
`W , and `P . The set of actions A = {⊗,⇑,⇓,�} has a no
operation action ⊗, a north action ⇑, a south action ⇓, and a
photo action�. The transition function T : S×A×S → [0, 1]
reflects the probability that the weather level w ∈W of each
point of interest p ∈ P changes as each action moves the
satellite to the next eastern longitude x′ ∈ X , while the
north and south actions ⇑ and ⇓ change the focus of the
camera north and south to the northern and southern latitudes
y′ ∈ Y and y′′ ∈ Y and the no operation and photo actions
⊗ and � do not change latitude y ∈ Y . The reward function
R : S × A→ R reflects the reward gained after performing
the photo action � at any latitude y ∈ Y and longitude
x ∈ X at a point of interest p ∈ P with a photo quality
based on the weather level w ∈W and a nil reward for any
other latitude y′ ∈ Y and longitude x′ ∈ X .

2) Abstract MDP: We use an abstract MDP M̄ =
〈S̄, A, T̄ , R̄〉 that partitions both the latitudes and longitudes

TABLE I
THE EARTH OBSERVATION PROBLEM SIMULATION PARAMETERS.

ID `X `Y `W `P |S| ¯̀
X

¯̀
Y

¯̀
W |S̄| |S̄|/|S| RANDP RANDW τ

A 6 3 4 2 288 3 3 2 8 0.028 20 5 100
B 6 3 4 3 1152 3 3 2 16 0.014 20 5 100
C 6 3 4 4 4608 3 3 2 32 0.007 20 5 100

D 12 6 4 2 1152 3 3 2 32 0.028 20 5 100
E 12 6 4 3 4608 3 3 2 64 0.014 20 5 100
F 12 6 4 4 18432 3 3 2 128 0.007 5 5 25

G 24 12 4 2 4608 3 3 2 128 0.028 20 5 100
H 24 12 4 3 18432 3 3 2 256 0.014 5 5 25
I 24 12 4 4 73728 3 3 2 512 0.007 5 2 10

J 24 18 4 2 6912 3 3 2 192 0.028 10 5 50
K 24 18 4 3 27648 3 3 2 384 0.014 5 5 25
L 24 18 4 4 110592 3 3 2 768 0.007 5 2 10

rectangularly and the weather levels contiguously into dif-
ferent abstract states. The set of abstract states S̄ = X̄ ×
Ȳ × W̄ |P | is a cross product of a set of abstract longitudes
X̄ = {x̄b1/¯̀

Xc, x̄b2/¯̀
Xc, . . . , x̄b`X/¯̀

Xc} that represents the
abstract position of the satellite, a set of abstract latitudes
Ȳ = {Ȳb1/¯̀

Y c, Ȳb2/¯̀
Y c, . . . , Ȳb`Y /¯̀

Y c} that represents the
abstract focus of its camera, a set of abstract weather levels
W̄ = {w̄b1/¯̀

W c, w̄b2/¯̀
W c, . . . , w̄b`W /¯̀

W c}}, and a set of
points of interests P for the abstract partition sizes ¯̀

X , ¯̀
Y ,

and ¯̀
W given an abstraction function φ. The attributes A, T̃ ,

and R̃ follow directly from the abstract MDP definition.
3) Partially Abstract MDP: We use a partially abstract

MDP 〈S̃, A, T̃ , R̃〉 that expands the current abstract state and
all abstract states generated by a given expansion strategy.
The set of partially abstract states S̃ = α ∪ β is a union of
a set of ground states α = {φ−1(s̄) | s̄ ∈ Γ} and a set of
abstract states β = {S̄ \ Γ} such that the set of expanded
abstract states Γ ⊆ S̄ contains the current abstract state
s̄ ∈ S̄ and other informative abstract states generated by an
EXPANSIONSTRATEGY function given an inverse abstraction
function φ−1. The attributes A, T̃ , and R̃ follow directly
from the definition of a partially abstract MDP.

VII. EXPERIMENTS

We show that our approach is near-optimal and scalable
by comparing it to a standard approach that solves a ground
MDP directly across a set of Earth observation problems.

Table I summarizes the parameters of the Earth observa-
tion problems. For each problem, we perform τ random trials
of 5000 simulation steps that are initialized with random
points of interest RANDP and a random weather level process
RANDW . These initializations are held constant across each
approach. In the first time step of each trial, the satellite
starts at a state with longitude 0 and latitude 0. During each
step, the satellite performs an action, gains a reward, and
transitions to a successor state. All trials were run on a 3.7
GHz quad-core CPU with 32 GB 1333 MHz DDR3 RAM.

A ground MDP and an abstract MDP are specified for
each problem. Each ground MDP uses parameters `X , `Y ,
`W , and `P that correspond to the state factor size of the
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Fig. 3. The result plots (a), (b), and (c) for the Earth observation domain. In (a), a log scale is used, the dotted line is a projection for any ground MDP
that is infeasible to solve, and the dashed line is the cumulative planning time for each abstract MDP. Shaded regions denote a confidence interval of 95%.

Fig. 4. A cumulative histogram over the cumulative reward ratios.

longitudes, latitudes, weather levels, and points of interest.
The state space size is |S| = `X × `Y × ``PW . Each abstract
MDP uses parameters ¯̀

X , ¯̀
Y , and ¯̀

W that correspond to
the abstract partition size for the abstract longitudes, abstract
latitudes, and abstract weather levels. The abstract state space
size is |S̄| = ¯̀

X× ¯̀
Y × ¯̀̀ P

W . The compression ratio is |S̄|/|S|.
We evaluate both approaches on each Earth observation

problem along two metrics. First, we measure the cumulative
planning time: the total planning time required by an agent
to solve all partially abstract MDPs for our approach and
the ground MDP for the standard approach. The planning
time required to solve each abstract MDP is measured
separately. Second, we measure the cumulative reward ratio:
an approximation ratio between 0 and 1 computed as the
total reward gained by the agent using an approach divided
by the reward gained by an agent that behaves optimally.
The value of the policies generated by each approach cannot
be measured directly using policy evaluation because state
abstractions can change the scale of the values.

Our approach expands the current abstract state and uses
the three EXPANSIONSTRATEGY functions shown in Fig-
ure 1. NAIVESTRATEGY expands no informative abstract
states. GREEDYSTRATEGY expands any informative abstract
state with the current abstract weather level that contains a
point of interest within 1 abstract state of the current abstract
state. PROACTIVESTRATEGY expands any informative ab-
stract state with the current abstract weather level contained
by the overlapping rectangles that are formed by the current
abstract state and any abstract state that contains a point of
interest within 2 abstract states of the current abstract state.

Our results are shown in four figures. Figure 3(a) shows
how the mean cumulative planning time over all trials
increases with the ground state space size. Our approach

incurs initial overhead but yields speedups of multiple orders
of magnitude for large ground state spaces. Figure 3(b) shows
how the mean cumulative reward ratio over all trials varies
with the ground state space size while Figure 3(c) shows how
the mean cumulative reward ratio over all trials increases
with the reward density (the fraction of ground states that
generate positive reward). Both figures indicate near-optimal
performance on average. We suspect the variation among
trials is caused by the suitability of expansion strategies to
different geometries of points of interest. Figure 4 shows
the cumulative frequency for each mean cumulative reward
ratio over all trials. The short tails for greedy and proactive
strategies suggest high performance and low variance.

There are three key takeaways. First, our approach with the
greedy and proactive expansion strategies performs nearly as
well as the standard approach in a fraction of the time. Next,
our approach offers a trade-off between solution quality and
computation time based on the choice of expansion strategy
and abstraction strategy. In fact, less aggressive expansion
strategies that expand fewer abstract states or more aggressive
abstraction functions with larger abstract partitions can be
used if planning time constraints are severe. This is consistent
with the idea that partially abstract MDPs span a continuum
of abstractions. Finally, our approach enables an agent to
only wait until the abstract MDP and the first partially
abstract MDP is built and solved while the standard approach
must wait until the ground MDP is built and solved. This
means that the planning time of our approach can not only
be amortized over the deployment of the agent but also
minimized through concurrent planning and execution.

VIII. CONCLUSION

We offer a novel model, a partially abstract MDP, that
reduces the complexity of a problem while maintaining high
quality solutions by simultaneously using different levels
of abstraction. We also provide theoretical results on the
generality of partially abstract MDPs and their bounded
optimality under certain conditions and propose a lazy algo-
rithm that enables autonomous systems to leverage partially
abstract MDPs during operation. Finally, we demonstrate
the efficiency and accuracy of our approach on an Earth
observation domain. Future work will explore sophisticated
strategies for state abstraction and state expansion.
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