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Abstract— Autonomous vehicles (AVs) require accurate met-
ric and topological location estimates for safe, effective naviga-
tion and decision-making. Although many high-definition (HD)
roadmaps exist, they are not always accurate since public roads
are dynamic, shaped unpredictably by both human activity and
nature. Thus, AVs must be able to handle situations in which the
topology specified by the map does not agree with reality. We
present the Variable Structure Multiple Hidden Markov Model
(VSM-HMM) as a framework for localizing in the presence
of topological uncertainty, and demonstrate its effectiveness on
an AV where lane membership is modeled as a topological
localization process. VSM-HMMs use a dynamic set of HMMs
to simultaneously reason about location within a set of most
likely current topologies and therefore may also be applied to
topological structure estimation as well as AV lane estimation.
In addition, we present an extension to the Earth Mover’s
Distance which allows uncertainty to be taken into account
when computing the distance between belief distributions on
simplices of arbitrary relative sizes.

I. INTRODUCTION

Localization is an essential capability for autonomous
mobile robots, including autonomous vehicles (AVs). Most
localization algorithms use metric maps as aids in the lo-
calization process, which represent features in continuous
coordinates. Topological maps represent space as discrete
components (vertices) and their logical-spatial relationship
(edges) where vertices and edges are taken in the graph
theoretic sense. The motivating example in this paper is an
AV which, in addition to requiring a metric location estimate,
also requires a topological location estimate at the lane level.
For example, the AV may need to know not just that it
is on Pleasant Street, but whether or not it is in the left
turn only lane. Moreover, events such as construction, traffic
accidents, natural disasters, and native map errors may result
in discrepancies between the topology suggested by the map
and reality. The localization algorithm on the AV must be
able to reason about this possibility.

Reasoning globally about all possible topologies is com-
putationally intractable, since the number of unique topolo-
gies scales exponentially with the number of locations.
Furthermore, there may be uncertainty in the number of
locations. Moreover, global topological information is rarely
present. Instead, we propose a method for reasoning about
location and structure within the local, observable topology.
Restricting the scope allows inference algorithms to reason
about multiple topologies with varying numbers of nodes.
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Fig. 1: Agreement of observations to HMM lane-states. State
x1, representing being between the right and center lanes, is
the only state for which all three vehicle detections (blue)
and the lane line detection (red) are likely for the AV (green).

The discrete nature of topological location, combined with
the requirement to reason about multiple possible realities
simultaneously, motivates our approach. The first key idea,
shown in Fig. 1, is to use Hidden Markov Models (HMMs)
for localization by modeling expected observations and tran-
sitions at and between topological nodes. The second key
idea is to use a variable set of HMMs to model a variety of
possible realities. Here, HMMs model the transition dynam-
ics and observation models of a topological map, analogous
to how Kalman filters model these aspects of a tracked object.
Thus, we call this approach Variable Structure Multiple Hid-
den Markov Models (VSM-HMM); its function being similar
to Variable Structure Multiple Models [11]. An important
distinction is that VSMMs allow tracking of objects which
follow a variety of process models, whereas the VSM-HMM
approach reasons about multiple world models.

This paper presents three contributions. First, we demon-
strate a method for applying HMMs to lane-level localization
on an AV (§II). Second, we describe our VSM-HMM
approach to managing a dynamic set of HMMs, each of
which estimates a location within a unique local topology,
allowing us to reduce dependence on high-definition (HD)
maps (§IV). Third, we extend the Earth Mover’s Distance
(EMD) in order to handle distributions which have domains
of different sizes during model belief initialization (§V).

Our approach is evaluated in simulation as well as on 6
real-world data sets gathered on public, multi-lane roads in
Silicon Valley. Results presented in §VI show that the VSM-
HMM model can provide accurate topological location esti-
mates, as well as detect disagreements between the topology
specified by the map and that supported by observation.



II. RELATED WORK

There are several different approaches to topological lo-
calization. The problem of global topological localization
may be modeled as a Partially Observable Markov Decision
Process (POMDP). However, approaches using POMDPs,
either in conjunction with geometric landmarks [25] or
fingerprints from visual input [22], do not scale well with
the number of topological nodes.

To reduce computational complexity, some approaches
eliminate most of the reasoning about uncertainty by directly
matching the robot’s current view against representative
feature vectors from topological locations in the map. A
variety of map representations, feature extraction methods,
and distance measures have been examined, including Gener-
alized Voronoi Graphs [3], SIFT and SURF features [1], and
Jeffrey divergence [24], respectively. These approaches work
well for environments in which nodes can be visited often,
and their representative feature vectors kept up-to-date [4].
However, this is rarely possible for an AV.

Localization algorithms specifically for AVs have typically
focused on metric location, relying on high-definition (HD)
maps for reliable, global data association. There are many
variants, including approaches which use vanilla particle fil-
ters [18], Rao-Blackwellized particle filters [10], and Kalman
Filters [19], [21], [5]. However, these approaches require HD
maps and compute both metric and topological location in a
single pass, which our approach does not.

In contrast, the proposed VSM-HMM model allows decou-
pling of metric and topological estimates, creating a hybrid
metric-topological problem similar to [15], [16], although
this paper focuses only on the topological component. Sim-
ilar to FastSLAM [13], VSM-HMM maintains multi-modal
belief over not only topological location, but also the local
topological structure. Until now, particle filters were the
only viable multi-modal topological localization framework.
Moreover, particle filters resampling ignores local topologi-
cal structure, whereas the VSM-HMM exploits this.

Dynamic Bayes Nets [14] are common tools for local-
ization [8], [2], and HMMs specifically have been used for
topological localization before. In [9] HMMs are used as an
optional layer to process video feed in the case of a low-
confidence nearest neighbor match, and in [7] HMMs are
trained to detect and classify specific railroad turnouts using
sequences of signals from eddy current sensors. Multiple
HMMs have been suggested for other tasks where the
number of classes is high, such as genome sequencing [6],
and hierarchical HMMs [23] have been used for language,
handwriting, and speech recognition.

III. LANE IDENTIFICATION USING HMMSs

Hidden Markov Models are promising candidates for topo-
logical localization for two primary reasons. First, HMMs
are well understood theoretically and support many efficient
modes of inference. In our application, we use the Forward
algorithm because it affords low computational cost. Second,
HMMs support learning and are easily designed for specific
sensor features and or topological structure. Additionally,

methods such as [20], can be used to refine observations
prior to evaluation by the HMM.
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Fig. 2: Simplified example lane-state HMM. Solid lines
represent non-zero transition probabilities between states.
Self-loops are not shown. Dashed lines represent observation
or emission probabilities, some of which are exclusive for a
single state. Note that the transition structure of the HMM
models the topological structure of the environment. Some
types of obervations have been omitted for simplicity.

Topological location is modeled as occupancy of a state
x; € X within an HMM. The application of this work
is toward lane-level localization, and thus the states X in
the HMM correspond to either being in the center of a
lane or being between two lanes. For example, an HMM
representing a two lane road, detailed in Fig. 2, has three
states xg, 1, and x2. g and z2 correspond to occupying the
right lane and the left lane, respectively. z; represents having
some portion of the car over the lane divider. We call states
like x; switching states. In general, an HMM representing a
road with L lanes will have 2L — 1 states.

A particular strength of HMMs in topological localization
is their ability to efficiently model real-world dynamics
via their transition function. Since the AV can only move
from one lane to an adjacent lane by moving through an
immediately adjacent switching state, the transition matrix
representing the transition function is sparse. We define the
state transition matrix for an n-state HMM, 7™, as

trifi=3j
Th=q tsifli—jl=1 (D
0 otherwise,

where ¢, and ts; are parameters for the probability of re-
maining in the same state and switching to an adjacent
state, respectively. This transition matrix reduces reports of
physically impossible events, such as instantaneous changes
across multiple lanes, which is a key advantage over other
multimodal approaches such as particle filters.

In addition to GPS and inertial sensors, we use lane line
detections and observed relative locations of other vehicles
to inform our topological estimate, shown in Fig. 3. For
lane lines we use a combination of learned parameters and
information from a map to parametrize a Gaussian Mixture
Model which describes the likelihood of observing a lane
line at positions and orientations relative to the AV, given a
particular lane-state.

Since observations of lane lines are unreliable due to oc-
clusions, weather and lighting conditions, and absence of the



Fig. 3: Diagram of lane-states and observable features. Lane-
states xg, . . . z4 correspond to distinct topological regions on
the road for which there are expected observations. xo is
the only state which both lane line measurements (red) and
vehicle detections (blue) support. Lane line measurements
alone would result in equal belief in states xo and x4.

markings themselves on many roads, we also use the relative
positions of nearby tracked vehicles to support occupancy
of certain lane-states. The key idea is that, although other
vehicles move both globally and relatively with respect to the
AV, they do so according to a specific local pattern defined
by lane membership. For example, if the AV is traveling on
a two-lane road and senses a vehicle immediately to its right,
then there is a high probability that the AV is in the left lane,
since the observed vehicle is far more likely to be traveling
in the right lane than to be traveling beyond the edge of the
road. We denote the observation function for state x; and
sensor ¢ as ¢(x;, q).

Although single HMMs are reliable for topological local-
ization when the map is correct and the number of states in
the HMM matches the number true lane-states, they can fail
when this is not true. To deal with this, we introduce the
Variable Structure Multiple Hidden Markov Model.

IV. VARIABLE STRUCTURE MULTIPLE HMMS

The Variable Structure Multiple Hidden Markov Model
(VSM-HMM) is similar to the variable-structure multiple-
model set of Kalman Filters used in many tracking domains.
However, whereas the multiple-model approaches in the
tracking and control literature predict the current dynami-
cal mode of the tracked object, the VSM-HMM approach
estimates the current structure of the local topology. That is,
the VSM-HMM hypothesizes about the outside world state
rather than an internal process model. This is necessary when
the local topological map has non-zero uncertainty.

We define a VSM-HMM as a set of all possible models U,
an active model set U4 and an inactive model set Uy . Every
u € U is an HMM with a unique transition matrix defined
by the number of lanes. Uy UUy = U, and Uy N Uy = 0.

At every time step, U4 is determined using a variation
of the Likely Model Set (LMS) algorithm [12], outlined
in Algorithm 1. For every v € U, we compute a model
likelihood (line 6). Pr(u|M) is the probability of model
u given the map M. If there was no uncertainty in M,

then Pr(u|M) would be 1 for the model suggested by
the map, ujps, and O otherwise. In our implementation,
Pr(u|M) = a2~ 1(ul=1urD/2] \where |uyy| is the number of
states in up, and « is a normalizing constant. Pr(z|u) is the
maximum probability of observing z given some state in wu,
MAX,, Pr(z|z; € X,). In Fig. 3, Pr(z|u) would be low for
models with fewer than three lanes since z contains features
which are unexpected in models with fewer than three lanes.

After model likelihood is computed, up to x models are
chosen so long as the ratio between their likelihood and
the maximum likelihood of all models is above a threshold
Tuctive (lines 8-14). k is chosen based on computational
constraints. Last, belief is copied from active models and
initialized for inactive models (lines 15-19). Initializing be-
lief is done using the Extended Earth Mover’s Distance (§V).

Algorithm 1 LIKELY MODEL SET

1: Input: All models U, active models U 4, observations z,
max number of models «, threshold 77 .¢;ye, map M

2: Output: Set of updated most likely models U’y
3: U,/q «— 0

4: S []

5: for all u € U do

6: L+ Pr(u|M) x Pr(z|u)

7: S < S.APPEND(L, u)

8 Lonaz < Max(S)

9: for all £,u € S do

1. if U/, =0 then

11: U1’4 — U1'4 Uu

12: else

13: if |U’,| < k and ﬁ > Toetive then
14: U, + U, Uu

15: for all v’ € U/, do
16: if ' € Uy then

17: u' <= COPYEXISTINGBELIEF(u')

18: else

19: u’ < INITNEWBELIEF(u')
return U/

Discrepancies between the map and reality are detected
by calculating the entropy, H, of the posterior probability
(belief) over the states in each model:

1 |X|

- Z bel(z;) log(bel(x;)).

H(bel(X)) = log(|X])

If the model suggested by the map has a high entropy
compared to another model, the map is likely incorrect since
high entropy indicates no state in the suggested topology can
explain the observations. Note that the normalized equation
for entropy calculates equal values for all models when no
information is present. Thus, having a lack of information
altogether will not cause the algorithm to flag the map as
having an error. Only observations which both contradict the
map’s topology and may be explained by a different topology
will result in a high entropy ratio. If |U4| > 1, serving a
localization requests amounts to picking the most likely state
from the model with the lowest entropy.



Fig. 4: Transition matrix for single HMM analog to VSM-
HMM. Light gray areas hold probabilities of switching
models, ¢,,. Block diagonals represent all models in U. Note
that the VSM-HMM reasons about only the active models,
represented by the black sub-blocks.

In theory, one could devise a single HMM with a dense
transition matrix 7%, which models the same problem. We
can define 7* in terms of the sub-blocks representing each
distinct topological hypothesis, 7%, 72, ..., 7" (models in
the VSM-HMM), and the transitions between them. Let each
sub-block 7% lie on the diagonal of 7*. Further, let the off-
diagonal blocks hold the probabilities of switching between
sub-blocks, t,,. Note that t¢,, is a notational placeholder
for a range of values corresponding to the probabilities of
transitioning between two specific sub-blocks (models).

. _ [ 7, if é,j index I,m in sub-block k
77| t,, otherwise.

5 2)

In general, this results in a p X p transition matrix, where
P = Y ucu | Xyl Similarly, X* and ¢* are defined by
the union of all state spaces and observation functions,
respectively. However, even when U4 = U, the VSM-HMM
is more computationally efficient than its single HMM analog
since calculating Pr(z|z;—1) only considers the block diago-
nals instead of the entire dense matrix, and calculating when
to switch models depends only on the block diagonal size. In
practice, U4 C U is much more common. In this case, the
VSM-HMM approximates the equivalent HMM by reasoning
over a subset of the most likely belief points, shown in Fig. 4.

V. EXTENDED EARTH MOVER’S DISTANCE

Whenever a model is initialized, it needs a starting belief.
Suppose an AV has a belief, 3, about its current topological
position in a local topology. 3 is discrete and lies on the n-
simplex, A", where n+ 1 is the number of local topological
states. Here, n + 1 = 2L — 1, where L is the number of
lanes on the road the AV is traveling. Further, suppose the
AV is nearing an intersection or merge in which the number
of lanes on the road the AV will end up on is L’. Once on
the new road the AV will initialize a new model and need
a new belief, 3, about its topological location. However, if
L' # L, § and B’ will be over different numbers of states.
The question is, if L' # L how do we initialize 8’, given 3.

One option is to erase all previous belief and start over
from uniform, 5’ = U/(0,m). Another option is to heuristi-
cally initialize (', such as right- or left-alignment of lane-
states. Both options are computationally efficient, but do
not perform optimally in many cases. A third option is
to initialize B’ as the ‘closest’ distribution in A™ to f3,
where ‘closeness’ is defined by some statistical metric. This
is preferable, but there are no metrics which satisfy the
constraints of the problem since there is no isomorphism
between A™ and A™, and the mapping from some belief
point in A™ to the corresponding point A™ is uncertain.
One example of uncertainty is a two-lane road which be-
comes a three-lane road across an intersection. It is unclear
whether the two lanes in the first road correspond to the two
rightmost, two leftmost, or some other combination of lanes
in the three-lane road.

Thus, we introduce a statistical metric based on the Earth
Mover’s Distance (EMD) [17], called the Extended Earth
Mover’s Distance (EEMD), which measures the expected dis-
tance between distributions on simplices of arbitrary relative
size, given the probability of all mappings between simplices.
Proof of metric properties is in the Appendix. We initialize
B’ such that EEMD(S, 8) is minimized.

Before defining EEMD, we introduce some notation. Let
P™ and P™ be normalized distributions on A™ and A™,
respectively, and define N = n+ 1, and M = m + 1.
Without loss of generality, suppose n > m. Let the function
frem s A™ — A”™ be defined as

mon pmy | Piif § <M

A ){ 0'if j > M. )
Thus, f™™ pads P™ with dimensions with zero belief,
making it the same size as P"”. We denote this new dis-
tribution, now on A", P™ . We can now use the original
formulation of EMD to compute distance between P™ and
P™. However, in general, there may be uncertainty in the
mapping between the two distributions. It may be that IP’;"I
and P? do not correspond to the same real world state. There
are NV possible mappings from P™ to P". We calculate
the expected distance by summing over all possibilities for
P™, and compute the EMD weighted by the probability of
each mapping, Pr(P™). Thus, we define the Extended Earth

Mover’s Distance between P and P as

NN
EEMD(P",P™) = Y Pr(P™))EMD(P",P™).  (4)
i=1
It is assumed that Pr(P™) is known and normalized. In
practice we calculate it using information from the map,
and our problem has structure allowing us to ignore most
of the summands since the corresponding Pr(P™:) term is
0. We use the EEMD as a principled guide to constructing
distributions for model initialization. 3’ is calculated such
that EEMD(3, 3’) is minimized.

VI. RESULTS

To test the VSM-HMM framework, we perform two
experiments. The first measures localization accuracy, and



the second tests the framework’s ability to reason about local
topological structure and detect discrepancies between the
map and reality.

Localization accuracy was tested on 6 hand-annotated
datasets gathered by an AV on public, multi-lane roads near
Nissan Research Center in Silicon Valley. Each dataset was
recorded over about a mile of stop-and-go traffic and ranged
in time from 2 to 6 minutes. All road segments had between
3 and 6 lanes, corresponding to between 5 and 11 states.
In these experiments no metric location information, such as
GPS, was used, and topological ground truth was provided.

Because of the intermittent nature of the lane line and
vehicle detections, not all timesteps possess enough ob-
servations to disambiguate lane-states. Thus, in the results
presented in Table I we do not consider instances in which
either no observations were recorded or the observations
voted for at least half of all states, such as seeing only
a single lane line immediately to the left of the vehicle.
These instances are labeled “Missing Observations”. Given
sequences of timesteps with little or no observations, it is
possible to have multiple states tie for the same belief.
Localization is considered correct if the true state is among
those with maximum belief, and incorrect otherwise. Length
and observation quality are shown so as to give an idea about
the difficulty of the dataset. Predictions are made at 100Hz.

Dataset | Length (mins) | Missing Obs. | Accuracy
1 2.0 11% 83%
2 3.7 18% 4%
3 4.8 6% 83%
4 44 9% 95%
5 35 30% 81%
6 5.7 20% 73%

TABLE I: Location estimation results

Testing topological structure estimation was done using
simulated data, since there were too few cases in the real
world data to draw concrete conclusions. To simulate false
positive data, lane line and vehicle detections are generated
according to the topology given by the map with probabil-
ity Py, and according to some other, randomly selected
topology with probability (1 — Pp;). Further, to simulate
the intermittent nature of real-world data, with probability
(1 — Pg) no observations are emitted. To see how our
approach handles increased sensor noise, we tested different
levels of variance. Given a variance o based on real-world
data, simulated observations are generated with variance
K, o0, where K, is an experimental parameter.

Locations of lane lines and vehicle detections are sampled
from multivariate normal distributions with means as a
function of the given topology, and variances K,o. The
observation generation process runs independently for each
lane line and vehicle detection. Table II displays the results
of local topological structure estimation. Combined, these
results demonstrate VSM-HMM as an effective framework
for dealing with topological uncertainty.

VII. CONCLUSION

This paper presents a framework, Variable Structure Mul-
tiple Hidden Markov Models (VSM-HMM), for topological

09 || 96 | 95 | 92 | 94 | 88 | 83 | 83 | 78 | 72
0.8 || 8 | 8 | 80 | 84 | 79 | 72 | 63 | 60 | 54
07 || 75| 74 | 72 | 66 | 65 | 61 | 55 | 50 | 50
0.6 || 66 | 63 | 63 | 62 | 63 | 59 | 51 | 48 | 49

Py

TABLE II: Local topological structure estimation accuracy.
Results are reported as the percent of timesteps during
which the correct topological structure was estimated with
highest probability (lowest entropy). Pps is probability of
sampling from the correct topology. Pr is the probability
of emitting observations. K, is the amount by which the
variance is scaled. Each entry in the table was computed
from performance over 1000 timesteps.

localization in the presence of topological uncertainty. We
present empirical results from both simulated and real-
world data on an autonomous vehicle which support VSM-
HMM’s effectiveness. Future work includes automating the
generation and maintenance of observation and transition
models through learning, as well as integrating this approach
with other map representations.
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VIII. APPENDIX

Theorem 1. EEMD is a metric, having the properties of non-
negativity, identity, symmetry, and the triangle inequality.

Non-negativity: Since EMD is a metric, it is always positive.
Pr(]P’mi) is always non-negative. Thus, their product is
always non-negative, and the sum of non-negative elements
is also non-negative.

Identity:

(EEMD(P",P™) =0 = P" =P™).

If EEMD(P",P™) = 0, then for all summands, either
Pr(P"i) = 0 and or EMD(P", P"":) = 0. Since Pr(P™) is a
distribution, there must be at least one i such that Pr(P") >
0. If there are more than one such ¢, then EEMD(P™, P™)
cannot be zero, since each P is unique and EMD is a
metric, violating the assumption EEMD(P",P™) = 0. If
there is a single i such that Pr(P™) > 0, then since EMD
is a metric and must be 0, EEMD(P",P") = 0 =
EMD(P" P™i) = (0 = P" =P™,

(P" = P = EEMD(P",P™) = 0).

This is clear from the definition of EEMD and Pr(P™:). All
Pr(P™) will be 0 except when P™ = P™. For this term,
the corresponding EMD will be 0 since EMD is a metric.

Symmetry: The smaller dimension is always augmented,
regardless of order. Thus, since Pr(IP’m;) is constant, the exact
same calculation is performed for both EEMD(P", P"™) and
EEMD(P™, P™). So, EEMD(P", P™) = EEMD(P™,P").

Triangle Inequality: Let m, n, and k& be non-negative
integers, and consider the three simplices, A™, A", and
AF. Without loss of generality, let m < n < k and define
N=n+1,M=m+1,and K = k+ 1.

Lemma 1.
EEMD(P", f™"(P™)) = EEMD(f"”“(]P”),fm”“(IP’m)).

From the definition of EEMD,

NN
EEMD(P", f™"™(P™)) = > _ Pr(P™))EMD(P", P™) (5)
i=1
and KK
EEMD(f™*(P"), f™*(P™))=Y Pr(P™ )EMD(P" ,P™).
=1

(6)
We call dimensions 1: N essential dimensions, and dimen-
sions (N + 1):K extra dimensions. The sum on the RHS
of equation (6) can be decomposed into two parts: one sum,
with NV terms, which corresponds to all mappings in which
the extra K — N dimensions map only amongst themselves,
and another sum, with K — NV terms, which corresponds
to all mappings where at least one of the extra dimensions
maps to one of the essential dimensions. Thus, we can rewrite
the RHS of equation (6) as

NN KK
S Pr(E™ EMD(E” ™ )+ Y Pr(P™ JEMD(B"  P™).
i=1 T

(N
Since none of the extra dimensions has any meaning in the
original problem and therefore cannot possibly map to any
essential dimension, Pr(P™) = 0 for all i > N Thus, the
second sum is 0 and equation (6) becomes

KX NN
S PP )EMD(P, P )= Pr(P™ )EMD(P" , P"™).
i=1 i=1

(3
Furthermore, since all extra dimensions have weight 0, their
contribution to all summands in equation (8) is 0. So,
equation (8) becomes

K¥ NN
> Pr(P™)EMD(P™, P™7) = ) " Pr(P™ )EMD(P", P™),
1=1 i=1
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establishing the lemma. Now, let P, P", and P* be distri-
butions on A™, A", and A¥, respectively. Consider

EEMD(P™, P*), and
EEMD(P™, P") + EEMD(P", P¥).
By Lemma 1, we can rewrite these as
EEMD(f™*(P™),P*), and
EEMD(f™*(P™), f™*(P")) + EEMD(f™*(P"), P*).
All distributions now lie on A*. Since all nodes in the
simplex are unit distance from all other nodes, then the
distance calculated by EMD for weight moving from one
node to any other node will be the magnitude of the weight.

Thus, if P maintains belief on any nodes with different
magnitude than P™ or P*, then

EEMD(f™*(P™), P¥) <

EEMD(f™*(P™), f™*(P")) + EEMD(f™*(P"), P*).
Otherwise,

EEMD(f™"(P™), P*) =

EEMD(f™*(P™), f™*(P")) + EEMD(f™"(P"), P¥).



