
Tuning the Hyperparameters of Anytime Planning:
A Metareasoning Approach with Deep Reinforcement Learning

Abhinav Bhatia,1 Justin Svegliato,2 Samer B. Nashed,1 Shlomo Zilberstein1

1 College of Information and Computer Sciences, University of Massachusetts Amherst
2 Department of Electrical Engineering and Computer Sciences, University of California Berkeley

abhinavbhati@cs.umass.edu, jsvegliato@berkeley.edu, snashed@cs.umass.edu, shlomo@cs.umass.edu

Abstract

Anytime planning algorithms often have hyperparameters
that can be tuned at runtime to optimize their performance.
While work on metareasoning has focused on when to inter-
rupt an anytime planner and act on the current plan, the scope
of metareasoning can be expanded to tuning the hyperparam-
eters of the anytime planner at runtime. This paper introduces
a general, decision-theoretic metareasoning approach that op-
timizes both the stopping point and hyperparameters of any-
time planning. We begin by proposing a generalization of the
standard meta-level control problem for anytime algorithms.
We then offer a meta-level control technique that monitors
and controls an anytime algorithm using deep reinforcement
learning. Finally, we show that our approach boosts perfor-
mance on a common benchmark domain that uses anytime
weighted A* to solve a range of heuristic search problems
and a mobile robot application that uses RRT* to solve mo-
tion planning problems.

Introduction
Anytime algorithms often have hyperparameters that can
be tuned at runtime to optimize their performance in a
given scenario—a specific problem instance and time con-
straint. Simply put, an anytime algorithm is an algorithm
that gradually improves its current solution at runtime and
can be interrupted at any time for that solution (Zilberstein
1996). This offers a trade-off between solution quality and
computation time that has proven to be useful in real-time
decision-making, such as motion planning (Karaman et al.
2011), heuristic search (Burns, Ruml, and Do 2013), object
detection (Karayev, Fritz, and Darrell 2014), belief space
planning (Spaan and Vlassis 2005), and probabilistic infer-
ence (Ramos and Cozman 2005). Naturally, to manage this
trade-off, current work on metareasoning focuses on deter-
mining when to interrupt an anytime planner and act on the
current plan. However, the scope of metareasoning can ide-
ally be expanded to tuning the hyperparameters of an any-
time planner at runtime to optimize its performance.

There has been substantial work on metareasoning that
determines when to interrupt an anytime algorithm and act
on the current solution. Generally, these methods monitor

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and control an anytime algorithm by tracking its perfor-
mance and calculating its stopping point at runtime. For ex-
ample, an early method estimates the optimal stopping point
by solving a sequential decision problem with dynamic pro-
gramming (Hansen and Zilberstein 2001) while a more re-
cent method estimates the optimal stopping point by predict-
ing its performance online (Svegliato, Wray, and Zilberstein
2018). These methods, however, cannot tune the hyperpa-
rameters of an anytime algorithm at runtime.

Methods for tuning the hyperparameters of an anytime al-
gorithm at runtime have largely been designed for specific
anytime algorithms and often lack formal analysis and gen-
erality while requiring expertise in the implementation.

In this paper, we introduce a general, decision-theoretic
metareasoning approach for both optimal stopping and hy-
perparameter tuning of anytime planning. Our approach ap-
proximates the problem of monitoring and controlling an
anytime algorithm as a Markov decision process (MDP). Its
states represent the quality and computation time of the cur-
rent solution and any other features needed to summarize the
internal state of the algorithm, the instance of the problem,
or the performance of the underlying system, while its ac-
tions represent either interrupting the algorithm or executing
the algorithm for another time step while tuning its inter-
nal hyperparameters. Our approach solves this MDP using
deep reinforcement learning (RL) to obtain a policy for both
optimal stopping and hyperparameter tuning of the anytime
algorithm: it performs a series of episodes, each of which
applies the anytime algorithm to some generated instance
of a specific problem. Our experiments on distinct problem
paradigms—anytime weighted A* for heuristic search and
RRT* for motion planning—show that deep RL is a natu-
ral approach to metareasoning for anytime algorithms since
the performance of an anytime algorithm is generally hard
to predict, but an abundance of simulations of the algorithm
can be easily performed.

Our main contributions are: (1) a generalization of the
standard meta-level control problem for anytime algorithms,
(2) a meta-level control technique that monitors and controls
an anytime algorithm based on deep RL, and (3) experiments
showing that our approach boosts performance on a common
benchmark domain that uses anytime weighted A* to solve
a range of heuristic search problems and a mobile robot ap-
plication that uses RRT* for motion planning.

Related Work
The literature on automated online hyperparameter tuning
for general algorithms is vast. Commonly used methods in-
clude local search (Adenso-Diaz and Laguna 2006; Hutter,
Hoos, and Stützle 2007; Hutter et al. 2009b), genetic algo-
rithms (Ansótegui, Sellmann, and Tierney 2009), racing al-
gorithms (Birattari et al. 2002, 2010), and sequential model-
based optimization (Hutter et al. 2009a, 2010; Hutter, Hoos
et al. 2011).

These methods have largely been designed for general al-
gorithms and generally do not exploit anytime algorithms.
By applying deep RL to anytime algorithms in particular,
our approach avoids the drawbacks often imposed by cur-
rent methods. First, unlike methods that only support nu-
merical hyperparameters and deterministic algorithms, our
approach supports both categorical hyperparameters and
stochastic algorithms. Next, unlike methods that only op-
timize an algorithm’s hyperparameters on a single known
problem instance, our approach optimizes an algorithm’s hy-
perparameters for each problem instance drawn from a prob-
lem distribution. In fact, our approach can tailor the algo-
rithm’s hyperparameters to a specific instance of a problem
at runtime—making adjustments in a non-myopic, decision-
theoretic manner. Finally, unlike methods that always exe-
cute an algorithm until completion, our approach learns to
terminate an algorithm early when it is beneficial.

Only one other approach that we are aware of proposes
using reinforcement learning for automated hyperparameter
tuning (Biedenkapp et al. 2020). Similar to our approach,
it represents the problem as an MDP to be solved using
deep reinforcement learning. However, while it provides a
template for general algorithms, our approach is tailored to
anytime algorithms, optimizing both the stopping point and
hyperparameters, with specific MDP characteristics and re-
ward structure that maximizes the value of the final solution
produced by the anytime algorithm prior to termination.

There has been a large body of work on optimal stop-
ping for anytime algorithms. The earliest approach, namely
fixed allocation, executes the algorithm until a stopping
point determined prior to runtime (Horvitz 1987; Boddy and
Dean 1994). While fixed allocation is effective given neg-
ligible uncertainty in the performance of the anytime al-
gorithm, there is often substantial uncertainty in real-time
planning (Paul et al. 1991). Hence, a more sophisticated ap-
proach, namely monitoring and control, tracks the perfor-
mance of the algorithm and estimates a stopping point at
runtime periodically (Horvitz 1990; Zilberstein and Russell
1995; Hansen and Zilberstein 2001; Lin et al. 2015; Sveg-
liato, Wray, and Zilberstein 2018; Svegliato and Zilberstein
2018; Svegliato, Sharma, and Zilberstein 2020). Our ap-
proach not only determines the stopping point but also tunes
the hyperparameters of an anytime algorithm at runtime.

Finally, there are specialized methods for heuristi-
cally tuning certain hyperparameters of anytime weighted
A* (Hansen and Zhou 2007; Sun, Druzdzel, and Yuan 2007;
Thayer and Ruml 2009; Bhatia, Svegliato, and Zilberstein
2021) and RRT* (Urmson and Simmons 2003; Akgun and
Stilman 2011; Kiesel, Burns, and Ruml 2012), without op-
timizing the stopping point. In this work, we apply our ap-

proach to optimize both the stopping point and tune selected
hyperparameters of anytime weighted A* and RRT* at run-
time, experimenting with the vanilla versions of these algo-
rithms for simplicity and generality as our approach focuses
broadly on anytime algorithms instead of heuristic search or
motion planning.

Standard Meta-Level Control Problem
We begin by reviewing the standard meta-level control prob-
lem for anytime algorithms. This requires a function that de-
scribes the utility of a solution computed by an anytime algo-
rithm in terms of its quality and computation time (Horvitz
and Rutledge 1991). We define this function below.
Definition 1. A time-dependent utility function U : Φ ×
Ψ→ R represents the utility U(q, t) of a solution of quality
q ∈ Φ at time step t ∈ Ψ.

A time-dependent utility function can be expressed as the
difference between an intrinsic value function that describes
the utility of a solution given its quality but not its computa-
tion time and a cost of time that describes the utility of a so-
lution given its computation time but not its quality (Horvitz
1988). We present this property as follows.
Definition 2. A time-dependent utility function U : Φ ×
Ψ → R is time-separable if the utility U(q, t) of a solution
of quality q ∈ Φ at time step t ∈ Ψ can be expressed as the
difference between two functions U(q, t) = UI(q) − UC(t)
where UI : Φ → R+ is the intrinsic value function and
UC : Ψ→ R+ is the cost of time.

The standard meta-level control problem for anytime al-
gorithms is the problem of determining when to interrupt an
anytime algorithm and act on the current solution (Horvitz
1990; Zilberstein 1996). Ideally, the solution to this problem
is the optimal stopping point because it results in the opti-
mum of the time-dependent utility function. However, the
optimal stopping point of an anytime algorithm can be chal-
lenging to determine given substantial uncertainty over the
performance of the anytime algorithm.

Generalized Meta-Level Control Problem
In this section, we propose a generalization of the standard
meta-level control problem for anytime algorithms. Intu-
itively, an anytime algorithm can be viewed as containing an
internal hyperparameter that either interrupts or executes the
algorithm for another time step (i.e., stopping) along with a
set of internal hyperparameters that adjust the internal op-
eration of the algorithm (i.e., hyperparameter tuning). This
results in a new meta-level control problem for both opti-
mal stopping and hyperparameter tuning of an anytime algo-
rithm. As we discuss later in the paper, our approach mon-
itors and controls an anytime algorithm by expressing this
new meta-level control problem as a deep RL problem. We
present a description of an anytime algorithm below.
Definition 3. An anytime algorithm, Λ, contains an inter-
nal hyperparameter Θ0 = {STOP, CONTINUE} that either
interrupts or executes the algorithm for another time step ∆
along with a set of internal hyperparameters {Θ1, . . . ,ΘℓΘ}
that adjusts the internal operation of the algorithm.

Figure 1: An illustration of anytime weighted A*.

Anytime weighted A*, an anytime variant of the
A* heuristic search algorithm (Hansen, Zilberstein, and
Danilchenko 1997; Likhachev, Gordon, and Thrun 2004;
Aine, Chakrabarti, and Kumar 2007; Hansen and Zhou
2007; Thayer and Ruml 2010) is a common example of an
anytime algorithm. We use anytime weighted A* to illustrate
our approach throughout the paper. The algorithm (1) uses
an inadmissible heuristic to quickly find suboptimal solu-
tions, (2) continues the search after each solution is found,
(3) provides an error bound on each suboptimal solution,
and (4) guarantees an optimal solution at termination. No-
tably, the standard evaluation function f(n) = g(n) + h(n)
used to select the next node for expansion from the open list
is replaced with a weighted evaluation function fw(n) =
g(n) + w · h(n), where the path cost g(n) is the cost of the
path from the start node to a node n and the heuristic h(n)
is the estimated cost from a node n to the goal node. Intu-
itively, by weighting the heuristic h(n) more heavily than
the path cost g(n) given any weight w≥1, the algorithm ex-
pands nodes that appear closer to reaching any solution in-
stead of nodes that lead to the optimal solution, potentially
speeding up the search at the expense of solution quality.

Figure 1 shows typical performance curves of two runs of
anytime weighted A* with different weights that each solve
a given instance of a problem. With deadlines, a weight of
2.0 leads to better quality at Contract 1 while a weight of 1.5
results in better quality at Contract 2. Without deadlines, a
weight of 2.0 leads to better quality in the short term but
worse quality in the long term while a weight of 1.5 results
in worse quality in the short term but better quality in the
long term. This leads to an important question: is it possible
to tune the hyperparameters of an anytime algorithm at run-
time to optimize its performance with or without deadlines?
We answer this question by offering a simple metareasoning
framework for learning optimal stopping and hyperparame-
ter tuning of anytime algorithms with deep RL.

Our metareasoning approach that uses deep RL represents
the generalization of the standard meta-level control prob-
lem for anytime algorithms as an MDP. An MDP is a for-
mal decision-making model for reasoning in fully observ-
able, stochastic environments that can be defined by a tuple
⟨S,A, T,R, s0⟩, where S is a finite set of states, A is a fi-
nite set of actions, T : S × A × S → [0, 1] represents the
probability of reaching a state s′ ∈ S after performing an
action a ∈ A in a state s ∈ S, R : S × A × S → R rep-

resents the expected immediate reward of reaching a state
s′ ∈ S after performing an action a ∈ A in a state s ∈ S,
and s0 ∈ S is a start state. A solution to an MDP is a pol-
icy π : S → A indicating that an action π(s) ∈ A should
be performed in a state s ∈ S. A policy π induces a value
function V π : S → R representing the expected discounted
cumulative reward V π(s) ∈ R for each state s ∈ S given
a discount factor 0 ≤ γ < 1. An optimal policy π∗ maxi-
mizes the expected discounted cumulative reward for every
state s ∈ S by satisfying the Bellman optimality equation
V ∗(s) = maxa∈A

∑
s′∈S T (s, a, s′)[R(s, a, s′)+γV ∗(s′)].

Here, we express the generalization of the standard meta-
level control problem for anytime algorithms as an MDP
with a specific state and action space. The states have state
factors that reflect the quality and computation time of the
current solution along with state factors that reflect the in-
ternal state of the algorithm, the instance of the problem, or
the performance of the underlying system. The actions have
an action factor that reflect the internal hyperparameter that
either interrupts or executes the algorithm for another time
step along with action factors that reflect the internal hyper-
parameters that adjust internal operation of the algorithm.
We formalize the generalized meta-level control problem for
anytime algorithms as an MDP in the following way.
Definition 4. The generalized meta-level control problem
for monitoring and controlling an anytime algorithm, Λ,
is represented by an MDP ⟨Φ,Ψ, F, S,A, T,R, s0⟩ given a
time-dependent utility function U : Φ×Ψ→ R:
• Φ = {q0, q1, . . . , qNΦ} is a set of qualities.
• Ψ = {t0, t1, . . . , tNΨ

} is a set of time steps.
• F = F0×F1×· · ·×FNF

is a set of features that summa-
rize the internal state of the algorithm, the instance of the
problem, or the performance of the underlying system.

• S = Φ × Ψ × F is a set of states of computation: each
state s ∈ S indicates that the algorithm has a solution of
quality q ∈ Φ at time step t ∈ Ψ with a feature f ∈ F .

• A = Θ0 × Θ1 × · · · × ΘNΘ
is a set of actions

of computation: the internal hyperparameter Θ0 =
{STOP, CONTINUE} either interrupts or executes the al-
gorithm for another time step while the internal hyper-
parameters Θ1, . . . ,ΘNΘ

adjust its internal operation.
• T : S ×A× S → [0, 1] is an unknown, possibly nonsta-

tionary transition function that represents the probability
of reaching a state s′ = (q′, t′, f ′) ∈ S after performing
an action a ∈ A in a state s = (q, t, f) ∈ S.

• R : S ×A× S → R is a reward function that represents
the expected immediate reward, R(s, a, s′) = U(q′, t′)−
U(q, t), of reaching a state s′ = (q′, t′, f ′) ∈ S after
performing an action a ∈ A in a state s = (q, t, f) ∈ S.

• s0 ∈ S is a start state s0 = (q0, t0, f0) ∈ S that indi-
cates that the algorithm has a solution of quality q0 ∈ Φ
at time step t0 ∈ Ψ with a feature f0 ∈ F .

Note that the reward function is consistent with the objective
of optimizing the time-dependent utility: executing the any-
time algorithm until a solution of quality q ∈ Φ at time step
t ∈ Ψ with a feature f ∈ F gives a cumulative reward that is
equal to the time-dependent utility U(q, t). This is a form of
reward shaping—equivalent to emitting a reward of U(q, t)

once at the end of an episode in terms of the objective—that
accelerates reinforcement learning by guiding the agent with
a reward at each time step (Ng, Harada, and Russell 1999).

Many metareasoning approaches to anytime algorithms
use only the quality and computation time of the current so-
lution as the state of computation (Zilberstein and Russell
1995). This state of computation, however, will likely not
satisfy the Markov property. It could therefore benefit from
features that summarize the internal state of algorithm, the
instance of the problem, or the performance of the underly-
ing system. As an example, in a domain that uses anytime
weighted A* to solve an instance of a travelling salesman
problem, there could be features for the mean of the g- and
h-values on the open list of anytime weighted A*, the num-
ber of cities in the instance at hand (Hutter et al. 2014), or the
processor usage of the system. Our metareasoning approach
can naturally use a complex representation for the state of
computation to approximate the Markov property by lever-
aging the advantages of using a neural network as a function
approximation with reinforcement learning.

We show that an optimal policy for the meta-level control
problem produces optimal meta-level control of an anytime
algorithm under certain conditions below.

Remark 1. If the change in the current solution of the any-
time algorithm given a state of computation s ∈ S and an
action of computation a ∈ A satisfies the Markov property,
the optimal policy π∗ : S → A results in optimal stopping
and hyperparameter tuning.

Proof Sketch. This follows directly from the Markov prop-
erty: a transition to a successor state of computation s′ ∈ S
only depends on the current state of computation s ∈ S and
the current action of computation a ∈ A.

Meta-Level Control with Deep RL
Our meta-level control technique based on deep RL learns
both optimal stopping and hyperparameter tuning for an
anytime algorithm: it performs a series of episodes that each
use the anytime algorithm to solve a generated instance of
a specific problem. Generally, deep RL has been effective
across a variety of applications, such as Atari (Mnih et al.
2015), chess (Silver et al. 2018), and StarCraft (Vinyals et al.
2019). A deep RL agent learns a policy as a neural network
by performing actions and observing rewards in the world,
making it a natural approach to the meta-level control prob-
lem for anytime algorithms for a few reasons. First, by bal-
ancing exploitation and exploration, it can learn how to ad-
just the algorithm’s internal hyperparameters without know-
ing the transition function. Next, by ignoring large unreach-
able regions of the state space, it can reduce the overhead
of learning how to adjust the algorithm’s internal hyperpa-
rameters. Finally, by using a neural network that extracts the
relationship between large input and output spaces, it can
encode the effects of the algorithm’s internal hyperparame-
ters on its internal state in a way that generalizes to internal
states that are unfamiliar or have not been seen yet.

Algorithm 1 shows our meta-level control technique that
uses deep Q-learning (Mnih et al. 2015). Each episode (Line

Algorithm 1: Our meta-level control technique.
Input: Anytime algorithm Λ, action-value networkN , step

size α1, target action-value network step size α2,
exploration strategy E , experience buffer capacity
ℓ1, number of episodes ℓ2, initialization period ℓ3,
minibatch size ℓ4, and duration ∆

Output: An action-value function Q

1 B ← EXPERIENCEBUFFER(ℓ1)
2 Q← NEURALNETWORK(N)

3 Q̂← Q

4 for i = 1, 2, . . . , ℓ2 do
5 P ← SAMPLEPROBLEMDISTRIBUTION()
6 Λ.SETUP(P)

7 t← 0
8 st ← (Λ.GETΦ(),Λ.GETΨ(),Λ.GETF ())

9 at ← πQ
E (st)

10 Λ.START(at.Θ1, . . . , at.ΘℓΘ)
11 SLEEP(∆)

12 while Λ.RUNNING() do
13 st+1 ← (Λ.GETΦ(),Λ.GETΨ(),Λ.GETF ())
14 rt ← R(st, at, st+1)

15 B.APPEND((st, at, rt, st+1))

16 if B.SIZE() ≥ ℓ3 then
17 M ← B.SAMPLEMINIBATCH(ℓ4)

18 L̂(r, s′) := r + γmaxa′∈A Q̂(s′, a′)

19 L(s, a, r, s′) := (L̂(r, s′)−Q(s, a))2

20 Q.BACKPROPAGATE(M,L, α1)

21 Q̂← (1− α2) · Q̂+ α2 ·Q
22 t← t+ 1

23 at ← πQ
E (st)

24 if at.Θ0 = STOP then
25 Λ.STOP()
26 break

27 Λ.CONTINUE(at.Θ1, . . . , at.ΘℓΘ)
28 SLEEP(∆)

29 return Q

4) starts by executing the anytime algorithm for a time step
(of a duration ∆) on a generated instance of a specific prob-
lem (Lines 5-11). For each time step as the anytime algo-
rithm is executing (Line 12), there are several steps. First, the
experience buffer is updated with the current state of com-
putation, the current action of computation, the current re-
ward, and the next state of computation (Lines 13-15). Next,
if the size of the experience buffer exceeds the initializa-
tion period, we sample a minibatch (Lines 16-17). With that
minibatch, the temporal-difference error is used to update
the action-value network via backpropagation and then the
target action-value network is updated via a moving average
(Lines 17-21). Finally, the anytime algorithm is either inter-
rupted or executed for another time step while adjusting its
internal hyperparameters by following the policy computed
from the action-value network and the exploration strategy
(Lines 22-28).

Internal State

Problem

System

Internal Parameters Anytime Weighted A*
Object-Level Process

Meta-Level Process
State Action

controlmonitor

Figure 2: An example of a metareasoning architecture.

Anytime Weighted A* Example
We now apply our approach to anytime weighted A*. Recent
work on anytime weighted A* focuses on selecting the best
static weight for a problem (Hansen and Zhou 2007), choos-
ing the best static weight for an instance of a problem (Sun,
Druzdzel, and Yuan 2007), and changing the weight at run-
time heuristically (Thayer and Ruml 2009). There is also
work that shows that anytime weighted A* can be improved
via restarting when a solution is found (Richter, Thayer, and
Ruml 2010) and work that analyzes the failure conditions
of anytime weighted A* with respect to its weight (Wilt and
Ruml 2012). Overall, recent work highlights the difficulty of
adjusting the weight of anytime weighted A* at runtime.

The meta-level control problem for anytime weighted A*,
Λ, is an MDP ⟨Φ,Ψ, F, S,A, T,R, s0⟩. Φ = [0, 1] is the set
of qualities. Ψ = [0, τ] is the set of time steps with a dead-
line τ . F is the set of features such that the feature w ∈ W
is the current weight, the features µg ∈ R and µh ∈ R are
the mean of the g- and h-values on the open list, the fea-
tures σg ∈ R and σh ∈ R are the standard deviation of the
g- and h-values on the open list, the features g ∈ R and
h ∈ R are the minimum g- and h-values on the open list,
the feature ζ ∈ R is the value log(n) for the number of
nodes n on the open list, the feature q̄ ∈ R is the h-value
of the initial state divided by the minimum f -value on the
open list, the feature h0 is the h-value of the initial state, the
feature ρgh ∈ [−1, 1] is the correlation between the g- and
h-values on the open list, the feature κ ∈ K is the settings
for the instance of the problem, and the feature χ ∈ [0, 1]
is the processor usage of the system. A is the set of actions:
Θ0 ∈ {STOP, CONTINUE} interrupts or executes the algo-
rithm for another time step ∆ while Θ1 = {←,→} adjusts
the weight w ∈ W gradually by shifting its pointer to the
set of weights W = {1, 1.5, 2, 3, 4, 5} left or right, which
is sufficient when the state transitions are also gradual. Note
that S, A, T , R, and s0 follow directly from the generalized
meta-level control problem for anytime algorithms.

Similar to recent work on metareasoning (Svegliato et al.
2019, 2022), the metareasoning architecture in Figure 2 has
a meta-level process that monitors and controls an object-

insert()insert() insert()

delete()

*

Figure 3: A modified implementation of anytime weighted
A* that manages multiple open lists for different weights.

level process that executes anytime weighted A*.
Anytime weighted A* involves a simple modification to

allow its weight to be adjusted at runtime. Instead of insert-
ing/deleting a node into/from a single open list for a static
weight, the algorithm inserts/deletes this node into/from |W |
virtual open lists each ordered by the fw-value of a weight
w ∈ W as shown in Figure 3 such that each open list has
a different ordering of the same exact nodes. This leads to
a worst-case time complexity of O(|W | log n) for sequen-
tially inserting/deleting a node across all |W | virtual open
lists of size n. In practice, thanks to the efficient implemen-
tation of anytime weighted A* used throughout our experi-
ments, we confirmed that the overhead of managing multiple
virtual open lists is negligible (less than 1%).

Experiments
We now evaluate our approach on a common benchmark do-
main that uses anytime weighted A* to solve a range of
heuristic search problems and a mobile robot application
that uses RRT* to solve motion planning problems.1

In our experiments, our approach and the standard ap-
proaches each solve 1000 random test instances of a given
problem using the anytime algorithm from both domains.
For each random test instance, we continuously measure the
solution quality produced by the anytime algorithm across
all approaches. A solution quality q = 0 means no solution
was computed while a solution quality q = 1 means an opti-
mal solution was computed. Formally, for any instance of a
problem, the quality of a given solution is ideally defined as
the approximation ratio, q = c∗/c, where c∗ is the cost of the
optimal solution and c is the cost of the given solution. How-
ever, since computing the optimal solutions for the complex
problems in our experiments is often infeasible, we estimate
the quality of a given solution as the approximation ratio,
q = ĉ∗/c, where ĉ∗ is a lower bound on the cost of the opti-
mal solution and c is the cost of the given solution, following
earlier work (Hansen and Zilberstein 2001).

Naturally, any meta-level control problem for anytime al-
gorithms requires a time-dependent utility function. In our
experiments, we consider a common stopping-deadline set-
ting: there is an increasing urgency for a solution to incen-
tivize early termination of the anytime algorithm along with

1A public Julia library offers the implementation of our ap-
proach and the RL environments for anytime weighted A* and
RRT*: ⟨https://github.com/bhatiaabhinav/Metareasoning.jl⟩.

a mandatory deadline of τ seconds that incurs a severe dead-
line penalty Υ. This is common in planning and robotics
where an autonomous system urgently needs a solution but
also needs that solution prior to a mandatory deadline. More
formally, given a solution of quality q ∈ Φ at time step
t ∈ Ψ, the time-dependent utility function is as follows:

U(q, t) = [t ≤ τ] · (UI(q)− UC(t))− [t > τ] ·Υ,

where UI(q) = ιq is the intrinsic value function and
UC(t) = eβt − 1 is the cost of time given the scalar ι and β
selected in practice based on the value of a solution and the
urgency for a solution (Hansen and Zilberstein 2001). We
want to highlight that our approach generally supports any
well-behaved time-dependent utility function in addition to
the time-dependent utility function considered in this paper.

Our approach is trained on random training instances for
each problem in the domains. These problems only involve
a few hours of training. Algorithm 1 uses typical settings for
deep Q-learning. The action-value networkN is a fully con-
nected neural network with two hidden layers of 64 and 32
nodes with ReLU activation and a linear output layer of 6
nodes. The step size α1 is 0.0001. The target action-value
network step size α2 is 0.001. The exploration strategy E is
ϵ-greedy action selection with an exploration probability ϵ
that is annealed from 1 to 0.1 over 1000 episodes. The ex-
perience buffer capacity ℓ1 is∞. The number of episodes ℓ2
is 15000 and 30000 for the anytime weighted A* and RRT*
domains. The initialization period ℓ3 is 1000. The minibatch
size ℓ4 is 128. The duration ∆ is 1/20th of the deadline. Our
experiments were run on an AMD Ryzen 3900X CPU with
32 GB of RAM using a fixed set of random seeds. Note that
the random training instances for each problem differ from
the random test instances to ensure that our approach gener-
alizes to unseen or unfamiliar instances of each problem.

Common Benchmark Domain
We first experiment with a common benchmark domain that
uses anytime weighted A* to solve a range of heuristic
search problems by comparing our approach to the stan-
dard approaches. For our approach, we consider two vari-
ants: DQNτ can adjust the weight but always executes any-
time weighted A* until the deadline τ while DQN(t) can
both adjust the weight and interrupt anytime weighted A* at
an earlier stopping point t. The standard approaches always
execute anytime weighted A* until the deadline τ and use
either a static weight (denoted by a number) or a dynamic
weight that decreases from the highest weight after each so-
lution (denoted by DEC), given a set of common weights
of 1, 1.5, 2, 3, 4, and 5 (Richter, Thayer, and Ruml 2010).
Overall, as we discuss later, our results demonstrate that our
approach outperforms the standard approaches regardless of
whether we always execute anytime weighted A* until the
deadline (DQNτ) or can interrupt anytime weighted A* at
an earlier stopping point (DQN(t)).

We provide a description of the heuristic search prob-
lems below. Each problem is selected to reflect problems
that require different static weights and problems for which
counterintuitive behavior of anytime weighted A* was re-
ported (Wilt and Ruml 2012). The parameters of each prob-

lem are selected to avoid trivializing the problem by either
not having enough time so that no approach finds any solu-
tion or having too much time so that every approach finds the
optimal solution before the deadline. For the time-dependent
utility function, the scalars ι and β are 1 and ln(1.25), the
deadline penalty Υ is roughly∞, and the deadline is τ = 1
second corresponding to roughly 100000, 100000, 50000,
and 500000 node expansions for the SP, ISP, TSP, and GNP
benchmark problems on our system using our implementa-
tion. This means that there is a cost of time UC(t) and a
mandatory deadline τ . Note that we enforce the node expan-
sion limit instead of the deadline for reproducibility.

Sliding Puzzle An SP instance has J = j2 − 1 tiles with
each tile i labeled from 1 to J in a j × j grid. Every tile
must be moved from an initial position to a desired position
given a unit cost c(i) = 1 for moving a tile i. The sum of the
Manhattan distances from the current position of each tile
to its desired position is used as an admissible and consis-
tent heuristic function h. The number of tiles J is 15. The
difficulty of an instance, as measured by the h-value of the
initial configuration of all tiles, is chosen randomly between
35 and 45. The MDP includes the setting K that represents
the difficulty for the instance of the problem.

Inverse Sliding Puzzle An ISP instance is the same as an
SP instance except that there is an inverse cost c(i) = 1/i for
moving a tile i. This means that the sum of the Manhattan
distances from the current position of each tile to its desired
position, weighted by the cost of moving each tile, is used
as an admissible and consistent heuristic function h.

Traveling Salesman Problem A TSP instance has J cities
that must be visited along an optimal route given a cost for
each edge between a pair of cities. A percentage of the edges
have an infinite cost to control its sparsity. The total cost
of a minimum spanning tree across the unvisited cities with
an infinite cost for no feasible tour is used as an admissible
and consistent heuristic function h. The number of cities J
is chosen randomly between 25 and 35. The percentage of
edges with an infinite cost is chosen randomly between 0%
and 90%. The cost for each edge between a pair of cities is
chosen randomly ∈ (0, 1]. The MDP includes the settings
K that represent the number of cities and the percentage of
edges with an infinite cost for the problem instance.

Grid Navigation Problem A GNP instance has a grid of
j×j cells with a percentage of the cells marked as obstacles.
The obstacles of shape 1×i are scattered randomly through-
out the grid. The goal is to find the shortest path from an
initial position of (1, 1) to a goal position (j, j) by moving
north, east, south, or west, which incurs unit cost. The Man-
hattan distance from the current position to the goal position
is used as an admissible and consistent heuristic function h.
The grid is set to j = 1000 and i = 10. The density of
the obstacles is chosen randomly between 5% and 10%. The
MDP includes the setting K for the density of the obstacles.

Common Benchmark Results Figure 4 demonstrates that
our DQNτ approach outperforms the best standard approach
on each benchmark problem: it exhibits a better mean time-

Figure 4: The box plots of the final time-dependent utilities produced by anytime weighted A* for each approach over all
instances of SP, ISP, TSP, and GNP (from left to right). Note that the crosses represent the mean, the bullets represent the
outliers, and the time-dependent utilities can be negative due to the cost of time UC(t) and the deadline penalty Υ.

Figure 5: An analysis of our approach (from left to right). (a) For SP, a histogram showing the distribution of every instance over
the utility error for each of our approaches. We define utility error as the normalized difference between the final time-dependent
utility of each of our approaches and the final time-dependent utility of the best approach that always executes anytime weighted
A* until the deadline. (b) For SP, a smoothed line chart showing the final solution quality (left y-axis), the final time-dependent
utility (left y-axis), and the final computation time (right y-axis) for each training episode of our DQN(t) approach. (c) For SP, a
bar chart showing the importance of the top 10 features used by our DQN(t) approach. We define importance as the normalized
mean absolute weight on a feature in the input layer of the neural network of our DQN(t) approach. (d) On a selected instance
of GNP, a line chart showing how the solution quality (left y-axis), the time-dependent utility (left y-axis), and the weight of
anytime weighted A* (right y-axis) vary with the computation time as anytime weighted A* solves the select instance using our
DQNτ approach (dotted lines) and our DQN(t) approach (solid lines). We emphasize that our DQNτ approach executes anytime
weighted A* until the deadline while our DQN(t) approach interrupts anytime weighted A* at the earlier stopping point.

dependent utility than DEC for SP and w = 4 for ISP and
a comparable time-dependent utility to DEC for TSP and
w = 5 for GNP. Hence, we observe that our DQNτ approach
is better than or comparable to the best standard approaches
without any need to adjust the weight manually for each
benchmark problem. More importantly, once we introduce
stopping on top of adjusting the weight automatically, our
DQN(t) approach further outperforms the best standard ap-
proach on each benchmark problem. This highlights that our
deep RL metareasoning approach for anytime algorithms
can learn both stopping and hyperparameter tuning unlike
existing methods that only optimize for one or the other.

Figure 5 offers an analysis of our approach. Figure 5(a)
shows that our DQN(t) and DQNτ approaches exhibit a util-
ity error of 0 for about 900 and 850 instances (out of 1000) of
the SP benchmark problem. This means it leads to the high-
est time-dependent utility more often than the standard ap-
proaches, which explains our results in Figure 4. Figure 5(b)
shows that, as our DQN(t) approach learns to optimize the
time-dependent utility for the SP benchmark problem, it ini-
tially focuses on improving the quality of the solution and
later focuses on reducing the computation time by terminat-
ing early. Hence, at the end of training, the agent learns how
to balance the quality of the solution and the computation
time. Figure 5(c) shows that the decisions of our DQN(t)

approach are informed by key features like the quality q of
the current solution, the heuristic value h0 of the starting
state, the current weight w of anytime weighted A*, the up-
per bound q̄ on the solution quality, and the computation
time t. Figure 5(d) shows a selected instance of the GNP
benchmark problem as it solved by our DQNτ approach and
our DQN(t) approach: the former terminates with a solution
of slightly higher quality but lower time-dependent utility
while the latter terminates with a solution of slightly lower
quality but higher time-dependent utility. Thus, we observe
that interrupting anytime weighted A* at an earlier stopping
point once its performance diminishes is beneficial.

Mobile Robot Application
We now experiment with the mobile robot application that
uses RRT* to solve motion planning problems by compar-
ing our approach to a standard approach. RRT* is a popular
algorithm that converges in the limit to an optimal motion
plan from a start state to a goal state by rapidly expanding a
tree via sampling the map randomly (Karaman et al. 2011).
Typically, RRT* has two hyperparameters: a growth factor
limiting how much the tree grows for each sample and an
area of focus biasing where each sample is drawn. Recent
work on RRT* focuses on heuristically tuning the growth
factor and area of focus (Urmson and Simmons 2003; Ak-

Figure 6: The performance curves showing how the mean
solution quality varies with the number of samples for all
instances of the motion planning problem.

gun and Stilman 2011; Kiesel, Burns, and Ruml 2012).
In particular, we compare our approach to a standard ap-

proach that executes RRT* with a small and large static
growth factor and an area of focus that spans the entire map.
Each motion planning problem is a map with a high den-
sity of obstacles where the start and goal states are in the
bottom-left and top-right corners. For the time-dependent
utility function, the scalars ι and β are 1 and 0, the dead-
line penalty is roughly ∞, and the deadline τ corresponds
to 1000 samples. This means that there is a mandatory dead-
line τ but no cost of time UC(t). Note that we again enforce
a sample limit instead of the deadline for reproducibility.

The meta-level control problem for RRT* is similar to
anytime weighted A* but with a distinct set of features and
actions of computation. The features include the growth fac-
tor, the position of the area of focus, the percentage of sam-
ples that have expanded the tree, a lower bound on the re-
maining distance to the goal state, an estimate of the free
space of the map, an estimated average size of the obsta-
cle, and a score for each possible area of focus that consid-
ers an estimated probability of improving the current path,
the fraction of the current path within that area of focus, the
fraction of the tree within that area of focus, and the average
curvature of the current path within that area of focus. The
actions of computation include the internal hyperparameter
that increases or decreases the growth factor and the internal
hyperparameter that moves the position of the area of focus.

Mobile Robot Results Figure 6 shows that our approach
outperforms the standard approach to RRT*. At the maxi-
mum number of samples, our approach produces a higher
mean solution quality than the standard approach by adjust-
ing the growth factor and the area of focus. In particular, our
approach achieves a mean solution quality of roughly 0.73
while the standard approach to RRT* achieves a mean solu-
tion quality of 0.62 and 0.59 for the large and small growth
factor. Moreover, over any number over 450 samples, our
approach is comparable to or better than the standard ap-
proach to RRT*. This indicates that it is sampling in a more
efficient way that results in better motion plans. Overall, we
find these results especially encouraging because our deep
RL architecture that was originally configured for anytime
weighted A* did not need to be updated for RRT*.

Figure 7 illustrates qualitatively how our approach adjusts
RRT* on selected instance. In general, our approach guides
the tree from the start state to the goal state of the map by

1 2

3 4
Figure 7: The evolution of RRT* over the number of sam-
ples for our approach on a selected instance of the motion
planning problem from Checkpoint 1 to 4. The black shapes
are the obstacles, the green and red circles are the start and
goal states, the blue lines are the current tree, the cyan cir-
cles are the samples, the purple line is the current path, and
the orange box is the current area of focus.

focusing on the frontier that has been less explored to com-
pute an initial path quickly. That is, from Checkpoint 1 to 4,
the area of focus is typically placed at the frontier of the ex-
isting tree of RRT*. Intuitively, our approach shifts the area
of focus to the frontier to compute an initial motion plan as
quickly as possible (shown). Thereafter, once our approach
has computed an initial motion plan, it favors the center of
the map near the initial motion plan to improve it as rapidly
as possible (not shown). Overall, our approach learns how to
shift the area of focus to key areas of the map, outperforming
the standard approach that samples from the entire map, by
reducing how long it takes to compute an initial motion plan
and how long it takes to improve that initial motion plan.

Conclusion
We present a general, decision-theoretic metareasoning ap-
proach that optimizes both the stopping point and hyperpa-
rameters of anytime planning. It not only boosts the perfor-
mance of an anytime algorithm by tuning its hyperparame-
ters at runtime on a specific instance of a problem, but also
eliminates any need for manual hyperparameter exploration.
Most importantly, we show that our meta-level control tech-
nique learns how to monitor and control anytime algorithms
that reflect distinct problem solving paradigms—heuristic
search and motion planning—without changing any of the
deep RL settings. Future work will explore additional any-
time algorithms commonly used in planning and robotics.

Acknowledgments
This work was supported by the NSF GRFP DGE-1451512
and the NSF grants IIS-1813490 and IIS-1954782.

References
Adenso-Diaz, B.; and Laguna, M. 2006. Fine-tuning of algorithms
using fractional experimental designs and local search. Operations
research, 54(1).
Aine, S.; Chakrabarti, P.; and Kumar, R. 2007. AWA*: A window
constrained anytime heuristic search algorithm. In 20th IJCAI.
Akgun, B.; and Stilman, M. 2011. Sampling heuristics for optimal
motion planning in high dimensions. In IROS.
Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A gender-
based genetic algorithm for the automatic configuration of algo-
rithms. In 15th CP.
Bhatia, A.; Svegliato, J.; and Zilberstein, S. 2021. On the benefits
of randomly adjusting anytime weighted A*. In 12th SOCS.
Biedenkapp, A.; Bozkurt, H. F.; Eimer, T.; Hutter, F.; and Lindauer,
M. 2020. Dynamic algorithm configuration: Foundation of a new
meta-algorithmic framework. In 24th ECAI.
Birattari, M.; Stützle, T.; Paquete, L.; and Varrentrapp, K. 2002. A
racing algorithm for configuring metaheuristics. In 4th GECCO.
Birattari, M.; Yuan, Z.; Balaprakash, P.; and Stützle, T. 2010. F-
Race and iterated F-Race: An overview. Experimental Methods for
the Analysis of Optimization Algorithms.
Boddy, M.; and Dean, T. L. 1994. Deliberation scheduling for prob-
lem solving in time-constrained environments. AI, 67(2).
Burns, E.; Ruml, W.; and Do, M. B. 2013. Heuristic search when
time matters. JAIR, 47.
Hansen, E. A.; and Zhou, R. 2007. Anytime heuristic search. JAIR,
28.
Hansen, E. A.; and Zilberstein, S. 2001. Monitoring and control of
anytime algorithms: A dynamic programming approach. AI, 126.
Hansen, E. A.; Zilberstein, S.; and Danilchenko, V. A. 1997. Any-
time Heuristic Search: First Results. Technical Report 97-50, Com-
puter Science Department, University of Massachusetts Amherst.
Horvitz, E. 1988. Reasoning under varying and uncertain resource
constraints. In 7th AAAI.
Horvitz, E.; and Rutledge, G. 1991. Time-dependent utility and
action under uncertainty. In 7th UAI.
Horvitz, E. J. 1987. Reasoning about beliefs and actions under
computational resource constraints. In 3rd UAI.
Horvitz, E. J. 1990. Computation and action under bounded re-
sources. Ph.D. thesis, Stanford University, CA.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Murphy, K. 2010.
Time-bounded sequential parameter optimization. In 4th LION.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Murphy, K. P.
2009a. An experimental investigation of model-based parameter
optimisation: SPO and beyond. In 11th GECCO.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle, T.
2009b. ParamILS: An automatic algorithm configuration frame-
work. JAIR, 36.
Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic algorithm
configuration based on local search. In 22nd AAAI.
Hutter, F.; Hoos, H. H.; et al. 2011. Sequential model-based opti-
mization for general algorithm configuration. In 5th LION.
Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014. Al-
gorithm runtime prediction: Methods & evaluation. AI, 206.

Karaman, S.; Walter, M. R.; Perez, A.; Frazzoli, E.; and Teller, S.
2011. Anytime motion planning using the RRT*. In ICRA.
Karayev, S.; Fritz, M.; and Darrell, T. 2014. Anytime recognition
of objects and scenes. In 27th CVPR.
Kiesel, S.; Burns, E.; and Ruml, W. 2012. Abstraction-guided sam-
pling for motion planning. In 5th SOCS.
Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*: Anytime
A* with provable bounds on sub-optimality. In 17th NeurIPS.
Lin, C. H.; Kolobov, A.; Kamar, E.; and Horvitz, E. 2015. Metar-
easoning for planning under uncertainty. In 24th IJCAI.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; et al. 2015. Human-level
control through deep reinforcement learning. Nature, 518(7540).
Ng, A. Y.; Harada, D.; and Russell, S. J. 1999. Policy invariance
under reward transformations: Theory and application to reward
shaping. In 16th ICML.
Paul, C. J.; Acharya, A.; Black, B.; and Strosnider, J. K. 1991. Re-
ducing problem-solving variance to improve predictability. Com-
munications of the ACM, 34(8).
Ramos, F. T.; and Cozman, F. G. 2005. Anytime anyspace proba-
bilistic inference. IJAR, 38(1).
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy of forgetting:
Faster anytime search via restarting. In 20th ICAPS.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.;
Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
2018. A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, 362(6419).
Spaan, M. T.; and Vlassis, N. 2005. Perseus: Randomized point-
based value iteration for POMDPs. JAIR, 24.
Sun, X.; Druzdzel, M. J.; and Yuan, C. 2007. Dynamic weighting
A* search-based MAP algorithm for Bayesian networks. In 20th
IJCAI.
Svegliato, J.; Basich, C.; Saisubramanian, S.; and Zilberstein, S.
2022. Metareasoning for safe decision making in autonomous sys-
tems. In ICRA.
Svegliato, J.; Sharma, P.; and Zilberstein, S. 2020. A model-free
approach to meta-level control of anytime algorithms. In ICRA.
Svegliato, J.; Wray, K. H.; Witwicki, S. J.; Biswas, J.; and Zilber-
stein, S. 2019. Belief space metareasoning for exception recovery.
In IROS.
Svegliato, J.; Wray, K. H.; and Zilberstein, S. 2018. Meta-level
control of anytime algorithms with online performance prediction.
In 27th IJCAI.
Svegliato, J.; and Zilberstein, S. 2018. Adaptive metareasoning for
bounded rational agents. In 1st Workshop on AEGAP.
Thayer, J.; and Ruml, W. 2009. Using distance estimates in heuris-
tic search. In 19th ICAPS.
Thayer, J.; and Ruml, W. 2010. Anytime heuristic search: Frame-
works and algorithms. In 3rd SOCS.
Urmson, C.; and Simmons, R. 2003. Approaches for heuristically
biasing RRT growth. In IROS.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; et al. 2019. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575(7782).
Wilt, C.; and Ruml, W. 2012. When does weighted A* fail? In 5th
SOCS.
Zilberstein, S. 1996. Using anytime algorithms in intelligent sys-
tems. AI Magazine, 17(3).
Zilberstein, S.; and Russell, S. J. 1995. Approximate reasoning
using anytime algorithms. In Natarajan, S., ed., Imprecise and Ap-
proximate Computation. Springer.

